Theorem 1. (Revised version) Let $\kappa(s) > 0$ and $\tau(s)$ be smooth function on (a, b). There exists a regular curve $\alpha : (a, b) \to \mathbb{R}^3$ with $|\alpha'| = 1$, such that the curvature and torsion of α are k, τ respectively.

Moreover, α is unique in the sense that if β is another curve satisfying the above conditions, then $\beta(s) = \alpha(s)P + \vec{c}$ for some constant orthogonal matrix P and some constant vector \vec{c} . Here α, β are considered as row vectors.

Proof. (Existence): Let

$$A(s) = \left(\begin{array}{ccc} 0 & \kappa(s) & 0\\ -\kappa(s) & 0 & \tau(s)\\ 0 & -\tau(s) & 0 \end{array}\right).$$

Let X(s) be the 3×3 matrix and fix s_0 which is the solution of:

$$\begin{cases} X' = AX \text{ in } (a,b); \\ X(s_0) = I. \end{cases}$$

The solution exists by a theorem in ODE. We claim that X is orthogonal with determinant 1. In fact

 $(X^{t}X)' = (X^{t})'X + X^{t}X' = (AX)^{t}X + X^{t}AX = X^{t}A^{t}X + X^{t}AX = 0$ because $A^{t} = -A$. Hence $X^{t}X = I$ because $X^{t}(s_{0})X(s_{0}) = I$. (Using $(XX^{t})'$ may be more involved.) Hence X(s) is orthogonal. Since det X(s) = 1 or -1 and initially, det $X(s_{0}) = 1$, we have det X(s) = 1. Write

$$X = \left(\begin{array}{c} T\\ \widetilde{N}\\ \widetilde{B} \end{array}\right).$$

Define $\alpha(s) = \int_{s_0}^s \widetilde{T}(\sigma) d\sigma$. Let T, N, B be the tangent, principal normal and binormal of α , and let $\kappa_{\alpha}, \tau_{\alpha}$ be the curvature and torsion of α . Then $\alpha' = \widetilde{T}$ which has length 1. So $T = \widetilde{T}$. Moreover,

$$\kappa_{\alpha}N = T' = \widetilde{T}' = \kappa \widetilde{N}.$$

we have $\kappa_{\alpha} = \kappa$ and $N = \widetilde{N}$. Since $\widetilde{T}, \widetilde{N}, \widetilde{B}$ are positively oriented, we conclude that

$$B = T \times N = \widetilde{T} \times \widetilde{N} = \widetilde{B},$$

and

$$-\tau_{\alpha}N = B' = B' = -\tau N = -\tau N.$$

Hence $\tau_{\alpha} = \tau$.

Uniquess: Let α, β as in the theorem. Let $T_{\alpha}, N_{\alpha}, B_{\alpha}$ be the unit tangent, principal normal, binormal of α ; and let $T_{\beta}, N_{\beta}, B_{\beta}$ be the unit tangent, principal normal, binormal of β . Fix $s_0 \in (a, b)$. Let P be an orthogonal matrix with determinant 1 such that

$$\begin{pmatrix} T_{\beta}(s_0) \\ N_{\beta}(s_0) \\ B_{\beta}(s_0) \end{pmatrix} = \begin{pmatrix} T_{\alpha}(s_0) \\ N_{\alpha}(s_0) \\ B_{\alpha}(s_0) \end{pmatrix} P.$$

Here T_{α}, \ldots , etc are considered as row vectors. Let $\gamma(s) = \alpha(s)P$. Let $T_{\gamma}, N_{\gamma}, B_{\gamma}$ be unit tangent, principal normal, binormal of γ . Then

$$T_{\gamma} = \gamma' = \alpha' P = T_{\alpha} P,$$

$$\kappa N_{\gamma} = T'_{\gamma} = T'_{\alpha} P = \kappa N P$$

and so $T_{\gamma} = T_{\alpha}P, N_{\gamma} = N_{\alpha}P$. Hence $B_{\gamma} = B_{\alpha}P$. We have

$$\begin{pmatrix} T_{\gamma} \\ N_{\gamma} \\ B_{\gamma} \end{pmatrix}' = \begin{pmatrix} T_{\alpha} \\ N_{\alpha} \\ B_{\alpha} \end{pmatrix}' P = A \begin{pmatrix} T_{\alpha} \\ N_{\alpha} \\ B_{\alpha} \end{pmatrix} P = A \begin{pmatrix} T_{\gamma} \\ N_{\gamma} \\ B_{\gamma} \end{pmatrix}$$

where A is as above. Since

$$\begin{pmatrix} T_{\gamma}(s_0) \\ N_{\gamma}(s_0) \\ B_{\gamma}(s_0) \end{pmatrix} = \begin{pmatrix} T_{\alpha}(s_0) \\ N_{\alpha}(s_0) \\ B_{\alpha}(s_0) \end{pmatrix} P = \begin{pmatrix} T_{\beta}(s_0) \\ N_{\beta}(s_0) \\ B_{\beta}(s_0) \end{pmatrix}$$

we have $T_{\gamma} = T_{\beta}$, by uniqueness theorem of ODE. So $\gamma(s) + \vec{c} = \beta(s)$ for some constant vector \vec{c} . That is: $\beta(s) = \alpha(s)P + \vec{c}$.

	I