THE GAUSS-BONNET THEOREM

1. Exterior and interior angles of a region

Definition 1. Let $\alpha : [a, b] \to M$ be a curve. α is said to be *piecewise* smooth if there exist $a = t_0 < t_1 < \cdots < t_k = b$ such that

- (i) α is continuous;
- (ii) α is regular and is smooth on each $[t_i, t_{i+1}]$.
 - α is said to be *simple* if $\alpha(t) \neq \alpha(t')$.
 - α is said to be *closed* if $\alpha(a) = \alpha(b)$.
 - α is said to be *simple closed* if α is closed and is simple on (a, b].
 - α is said to be a *closed geodesic* if α is a smooth geodesic so that $\alpha(a) = \alpha(b)$ and $\alpha'(b) = \alpha'(a)$.

Definition 2. Let M be an oriented regular surface and $\mathcal{R} \subset M$ is a bounded domain in M which is bounded by some piecewise smooth simple closed curve $\alpha_1, \ldots, \alpha_n$. Then α_i is said to be positively oriented if the unit normal $\mathbf{n} \perp \alpha'$ is such that (i) α', \mathbf{n} are positively oriented; and (ii) \mathbf{n} is pointing insider \mathcal{R} .

Now let $\mathcal{R} \subset M$ is a bounded domain in M which is bounded by some piecewise smooth positively oriented simple closed curve $\alpha_1, \ldots, \alpha_n$. Denote α be one of the α_k parametrized by arc length with length ℓ . Let $0 = t_0 < t_1 < \cdots < t_{k+1} = \ell$ such that α is smooth on $[t_i, t_{i+1}]$ and α is smooth near $\alpha(0) = \alpha(\ell)$. Each $\alpha(t_i \text{ is a vertex.}$ We want to define exterior angle θ_i at $\alpha(t_i)$. First let

$$\alpha'(t_i-) = \lim_{t < t_i, t \to t_i} \alpha'(t); \alpha'(t_i+) = \lim_{t > t_i, t \to t_i} \alpha'(t)$$

- $\alpha(t_i-) = \alpha(t_i+)$, then $\theta_i = 0$.
- $\alpha(t_i-) \neq \pm \alpha(t_i+)$. Then they are linearly independent. Then θ_i is the oriented angle from $\alpha(t_i-)$ to $\alpha(t_i+)$ between $-\pi, \pi$. θ_i is positive (negative), if $\alpha(t_i-), \alpha(t_i+)$ are positively (negative)) oriented.
- $\alpha(t_i) = -\alpha(t_i)$, the $\theta_i = \pi$ or $-\pi$. The sign is determined by 'approximation'.

The interior angle ι_i at $\alpha(t_i)$ is defined as $\iota_i = \pi - \theta_i$.

2. Hopf's Umlaufsatz

Theorem 1 (Hopf's Umlaufsatz, Theorem of Turning Tangents). Let $\alpha : [0, l] \to \mathbb{R}^2$ be a piecewise regular, simple closed curve. Let $\alpha(t_0)$, $\alpha(t_1), \ldots, \alpha(t_k), 0 = t_0 < t_1 < \cdots < t_k < t_{k+1} = l$ be the vertices of α with exterior angle θ_i . Let φ_i be smooth choice of angles defined in

 $[t_i, t_{i+1}]$ such that the oriented angle from the positive axis to $\alpha'(t)$ is $\varphi_i(t)$ (i.e. $\alpha' = (\cos \varphi_i(t), \sin \varphi_i(t)))$ for $t \in [t_i, t_{i+1}]$. Then

$$\sum_{i=1}^{k} (\varphi_i(t_{i+1}) - \varphi_i(t_i)) + \sum_{i=0}^{k} \theta_i = \pm 2\pi.$$

Remark 1. Umlauf means "rotation" in German; Umlaufzahl = "rotation number," Satz = "theorem."

3. The Gauss-Bonnet Theorem: local version

Theorem 2. Let $\mathbf{X} : U \to M$ be an isothermal local parametrization of an oriented surface M (i.e. $E = G = e^{2f}$, F = 0). Assume that \mathbf{X} is orientation preserving. Let $\alpha = \alpha(s) = \mathbf{X}(u(s), v(s)), 0 \le s \le l$, be a simple closed curve parametrized by arc length so that (u(s), v(s))bounds a region D in U. Let $\mathcal{R} = \mathbf{X}(D)$. Assume α is piecewise smooth and positively oriented. Let $\alpha(s_0), \ldots, \alpha(s_k)$ be the vertices of α with exterior angles $\theta_0, \ldots, \theta_k$, where $0 = s_0 < s_1 < \cdots < s_k < s_{k+1} = l$. Then

$$\int_0^l k_g(s)ds + \iint_{\mathcal{R}} KdA + \sum_{i=0}^k \theta_i = 2\pi.$$

We need the following:

Theorem 3. Let Ω be a bounded domain if \mathbb{R}^2 and let $\gamma = \gamma(s)$ parametrized by arc length, $0 \leq s \leq l$ be the boundary curve of Ω , positively oriented. Assume that γ is piecewise smooth. Let ν be the unit outward normal of Ω . Suppose P and Q are two smooth functions defined on Ω , and let $\mathbf{w} = (P, Q)$. Then

$$\int_{\Omega} \left(\frac{\partial P}{\partial u} + \frac{\partial Q}{\partial v} \right) du dv = \int_{0}^{l} \langle \mathbf{w}, \nu \rangle ds$$

In case $\gamma = \gamma(t)$, $0 \le t \le L$, t may not be arc length. If we write $\gamma(t) = (u(t), v(t))$, $0 \le t \le l$, so that it is positively oriented. Then

$$ds = \sqrt{\left(\frac{du}{dt}\right)^2 + \left(\frac{dv}{dt}\right)^2} dt.$$

and

$$\nu = \frac{\left(\frac{dv}{dt}, -\frac{du}{dt}\right)}{\sqrt{\left(\frac{du}{dt}\right)^2 + \left(\frac{dv}{dt}\right)^2}}.$$

Hence

$$\int_0^l < \mathbf{w}, \nu > ds = \int_0^L \left(P \frac{dv}{dt} - Q \frac{du}{dt} \right) dt,$$

and

$$\int_{\Omega} \left(\frac{\partial P}{\partial u} + \frac{\partial Q}{\partial v} \right) du dv = \int_{0}^{l} \left(P \frac{dv}{dt} - Q \frac{du}{dt} \right) dt$$

Proof of Theorem 2. (Sketch) The geodesic curvature of α is given by $k_g = \phi' - u' f_v + v' f_u$

where $\phi = \phi_i$ is the oriented angle from \mathbf{X}_u to α' on $[s_i, s_{i+1}]$ for each *i*. The Gaussian curvature is given by

9f (a

$$K = -e^{2j} (f_{uu} + f_{vv}).$$

$$\int_0^l k_g(s)ds + \int_{\mathcal{R}} KdA = \sum_{i=0}^k (\varphi_i(s_{i+1}) - \varphi_i(s_i))$$

$$- \int_0^l (-u'f_v + v'f_u)ds + \int_D (f_{uu} + f_{vv}) dudv$$

$$= \sum_{i=0}^k (\varphi_i(s_{i+1}) - \varphi_i(s_i))$$

$$= 2\pi - \sum_{i=0}^k \theta_i$$

Corollary 1. Suppose k = 3, i.e. we have a triangle then

$$\int_0^l k_g(s)ds + \iint_{\mathcal{R}} KdA = \sum_{i=1}^3 \iota_i - \pi,$$

where $\iota_i = \pi - \theta_i$ are the interior angles. Hence if each side is a geodesic, then K > 0 implies the sum of the interior angles is larger than π , and K < 0, implies the sum of the interior angles is less than π .

4. The Gauss-Bonnet Theorem: global version

Definition 3. A region bounded by a simple closed curved with three vertices (and three edges) is called a triangle. A triangulation of a region \mathcal{R} is a finite family of of triangles $\{T_i\}_{i=1}^n$ such that (i) $\bigcup_{i=1}^n T_i = \mathcal{R}$; (ii) If $T_i \cap T_j \neq \emptyset$, $i \neq j$, then $T_i \cap T_j$ is a common edge or a common vertex.

Proposition 1. Every compact region in a regular surface with piecewise smooth boundary has a triangulation so that each triangle is inside an isothermal coordinate neighborhood. If each triangle is positively oriented, then adjacent triangles determine opposite orientation at the common edge. **Definition 4.** Let \mathcal{R} be as in the theorem, and let $\{T_i\}$ be a triangulation. Then $\chi(\mathcal{R}) = V - E + F$, where V = number of vertices; E = number of edges; F = number of faces.

Remark 2. $\chi(\mathcal{R})$ does not depend on the triangulation.

Theorem 4. Let M be an oriented regular surface and \mathcal{R} is a region in M bounded by piecewise smooth simply closed curve C_1, \ldots, C_n which are positively oriented. Let $\theta_1, \ldots, \theta_l$ be the set of exterior angles of \mathcal{R} . Then

$$\sum_{i=1}^{n} \int_{C_i} k_g ds + \iint_{\mathcal{R}} K dA + \sum_{j=1}^{l} \theta_j = 2\pi \chi(\mathcal{R}),$$

where $\chi(\mathcal{R})$ is the Euler characteristic of \mathcal{R} .

Proof of Theorem. (Sketch) Let $\{T_i\}_{i=1}^F$ be a triangulation in the proposition. Let ι_{ik} be the interior angles of T_i . Then

$$\sum_{i=1}^{n} \int_{C_i} k_g ds + \iint_{\mathcal{R}} K dA = \sum_{i=1}^{F} \sum_{k=1}^{3} \iota_{ik} - \pi F.$$

Let E_1 =number of external edges, E_2 =number internal edges, V_1 =number of external vertices, V_2 =internal vertices. W_1 =number of external vertices which are not end points of and C_i , and W_2 =external vertices which are end points of C_i . Note that $W_2 = l$.

$$\sum_{i=1}^{F} \sum_{k=1}^{3} \theta_{ik} = 2\pi V_2 + \pi W_1 + \sum_{j=1}^{l} (\pi - \theta_j).$$

Since $3F = 2E_2 + E_1$, $V_1 = E_1$, we have

$$\sum_{i=1}^{n} \int_{C_{i}} k_{g} ds + \iint_{\mathcal{R}} K dA + \sum_{j=1}^{l} \theta_{j} = 2\pi V_{2} + \pi W_{1} + \pi l - \pi F$$
$$= 2\pi V_{2} + \pi V_{1} - \pi F$$
$$= 2\pi (F + V) - 3\pi F - \pi V_{1}$$
$$= 2\pi (F + V) - 2\pi E_{2} - \pi E_{1} - \pi E_{1}$$
$$= 2\pi (V - E + F).$$

Let M be a compact oriented surface. Then M is diffeomorphic to the unit sphere \mathbb{S}^2 with g handles attached, (g is called the genus of M). Moreover, $\chi(M) = 2 - 2g$.

4

Corollary 2. Let M be a regular orientable compact surface. Then

$$\iint_M K dA = 2\pi \chi(M) = 4\pi (1-g),$$

where g is the genus of M. Hence: (i) $\int_M K dA > 0$ if and only if M is diffeomorphic to \mathbb{S}^2 ; (ii) $\int_M K dA = 0$ if and only if M is diffeomorphic to the torus; and (iii) $\int_M K dA < 0$ if and only if M is diffeomorphic to \mathbb{S}^2 with g handles attached for some $g \geq 2$.

Theorem 5 (The Jordan curve theorem). Every simple closed curve in \mathbb{R}^2 will divide \mathbb{R}^2 into exactly two components.

Assignment 10, Due Friday Nov 30

- (1) Let M be a compact oriented regular surface. Find the $\chi(M)$ if (i) M is homeomorphic to a sphere; (ii) M is homeomorphic to a torus. Also find $\int_M K dA$ in each case.
- (2) Prove that if M is a regular surface with nonpositive Gaussian curvature. Prove that two geodesics from a point p cannot meet again so that they form the boundary of a simple region, i.e. an open set which is homeomorphic to a disk.
- (3) Let M be compact surface with positive Gaussian curvature. Prove that M is homeomorphic to a sphere. Prove also that if there exist two distinct simple closed geodesics on M, then they must intersect.