1. Geodesic curvature on an orientable surface

Definition 1. Let M be a regular surface. M is said to be *orientable* if there exist coordinate charts $\mathcal{A} = \{(\mathbf{X}^{(k)}, U_k)\}$ covering M such that $\mathbf{X}^{(k)} \circ (\mathbf{X}^{(j)})^{-1}$ (if defined) is orientation preserving: the Jacobian matrix has positive determinant.

- Suppose M is orientable with coordinate charts \mathcal{A} as in the definition. For any $p \in M$ and let $\mathbf{v}_1, \mathbf{v}_2$ be linearly independent vectors in $T_p(M)$. $\mathbf{v}_1, \mathbf{v}_2$ are said to be *positively oriented* if and only if for any k with $p \in \mathbf{X}^{(k)}(U_k)$ the transformation matrix from $\mathbf{v}_1, \mathbf{v}_2$ to $\mathbf{X}_1^{(k)}, \mathbf{X}_2^{(k)}$ has positive determinant.
- Suppose M is orientable. Then a choice of coordinate charts \mathcal{A} as in the definition is called an *orientation* of M. There are 'basically' two orientations of an orientable surface.
- Given an orientation \mathcal{A} , let us denote $-\mathcal{A}$ to be the opposite orientation.
- Suppose M is orientable with orientation \mathcal{A} . Let α be a regular curve on M parametrized by arclength. Let $\mathbf{n} \in T_p(M)$ be such that α', \mathbf{n} are positively oriented. Then the geodesic curvature is given by $k_g = \langle \alpha'', \mathbf{n} \rangle$.
- The geodesic curvature will change sign if the orientation of *M* is changed to the opposite orientation.
- Fix an orientation in M. Suppose the orientation of α is changed to its 'negative' then the geodesic curvature will change sign.

2. Geodesics of surfaces of revolution

Let $(\phi(v), 0, \psi(v))$ be a regular curve on the xz-plane such that:

- (i) $\phi(v) > 0$, i.e. the curve does not intersect the z-axis.
- (ii) $(\phi_v)^2 + (\psi_v)^2 = 1$, i.e. the curve is parametrized by arc length.

Consider the surface of revolution M given by

$$\mathbf{X}(u,v) = (\phi(v)\cos u, \phi(v)\sin u, \psi(v)).$$

- The curve $\mathbf{X}(u_0, v)$ where u_0 is a constant is called a *meridian*; and
- the curve $\mathbf{X}(u, v_0)$ where v_0 is a constant is called a *parallel*.
- The first fundamental form is given by:

$$\begin{cases} g_{11} = E = \langle \mathbf{X}_u, \mathbf{X}_u \rangle = \phi^2, ;\\ g_{12} = g_{21} = F = \langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0\\ g_{22} = G = \langle \mathbf{X}_v, \mathbf{X}_v \rangle = (\phi_v)^2 + (\psi_v)^2 = 1. \end{cases}$$

- The Christoffel symbols are: $\Gamma_{12}^1 = \Gamma_{21}^1 = \phi_v/\phi$, $\Gamma_{11}^2 = -\phi\phi_v$ and all other Γ_{ij}^k are zeros.
- $\alpha(t) = \mathbf{X}(u(t), v(t))$ is a geodesic if and only if

$$\begin{cases} u'' + \frac{2\phi_v}{\phi}u'v' = 0, \\ v'' - \phi\phi_v(u')^2 = 0. \end{cases}$$

Corollary 1. Any meridian is a geodesic. A parallel $\mathbf{X}(u, v_0)$ is a geodesic if and only if $\phi_v(v_0) = 0$.

To study the behavior of general geodesics, we begin with the following lemma:

Lemma 1. Let $a_1(t), a_2(t)$ be smooth functions on $(T_1, T_2) \subset \mathbb{R}$ such that $a_1^2 + a_2^2 = 1$. For any $t_0 \in (T_1, T_2)$ and θ_0 such that $a_1(t_0) = \cos \theta_0$, $a_2(t_0) = \sin \theta_0$, there exists unique a smooth function $\theta(t)$ with $\theta(t_0) = \theta_0$ such that $a_1(t) = \cos \theta(t)$ and $a_2(t) = \sin \theta(t)$.

Proof. (Sketch) Suppose θ satisfies the condition. Then $a'_1 = -\theta' \sin \theta$, $a'_2 = \theta' \cos \theta$. Hence $\theta' = a_1 a'_2 - a_2 a'_1$. From this we have uniqueness. To prove existnce, fix $t_0 \in (T_1, T_2)$ and let θ_0 be such that $\cos \theta_0 = a_1(0)$, $\sin \theta_0 = a_2(0)$. Let

$$\theta(t) = \theta_0 + \int_{t_0}^t (a_1 a_2' - a_2 a_1') d\tau.$$

Let $f = (a_1 - \cos \theta)^2 + (a_2 - \sin \theta)^2$, with then $f' = 2(a_1 - \cos \theta)(a'_1 + \sin \theta \theta') + 2(a_2 - \sin \theta)(a'_2 - \cos \theta \theta')$ $= 2(a_1a'_1 + a_2a'_2 - a'_1\cos \theta - a'_2\sin \theta + \theta'(a_1\sin \theta - a_2\cos \theta))$ $= 2(-a'_1\cos \theta - a'_2\sin \theta + (a_1a'_2 - a_2a'_1)(a_1\sin \theta - a_2\cos \theta))$ = 0

because $a_1^2 + a_2^2 = 1$. So θ is a smooth function and is a required function.

Now let $\alpha(s) = \mathbf{X}(u(s), v(s))$ be a geodesic on M parametrized by arc length. Let $\mathbf{e_1} = \mathbf{X}_u / |\mathbf{X}_u|$ and $\mathbf{e_2} = \mathbf{X}_v / |\mathbf{X}_v|$. Then $\mathbf{e_1}, \mathbf{e_2}$ are orthonormal. Let

$$\alpha' = a_1 \mathbf{e_1} + a_2 \mathbf{e_2}.$$

By the lemma there exists smooth function $\theta(s)$ such that $a_1 = \sin \theta$, $a_2 = \theta$. Note that θ is the angle between α' and the meridian.

Proposition 1 (CLAIRAUT'S THEOREM). $r(s) \sin \theta(s)$ is constant along α , where r(s) is the distance of $\alpha(s)$ from the z-axis.

2

Proof. (Sketch) Denote the $\frac{d\alpha}{ds}$ by α' etc. Since $r(s) = \phi(v(s))$, $r' = \phi_v v'$. Also $\sin \theta = \langle \alpha', \mathbf{e_1} \rangle = u'\phi$, so $(\sin \theta)' = u''\phi + u'v'\phi_v$. $(r \sin \theta)' = \phi_v v'u'\phi + u''\phi + \phi_v u'v'$ $= \phi \left(u'' + \frac{2\phi_v}{\phi}u'v' \right)$ = 0.

Let us analyse a geodesic $\alpha(s)$, $0 \leq s < L \leq \infty$, on the surface of revolution parametrized by arc length. Let us assume that $\psi(v)$ is increasing. Let r(s) and $\theta(s)$ be as in Clairaut's Theorem. Let $\theta_0 =$ $\theta(0)$. We may assume that $0 \leq \theta_0 \leq \frac{\pi}{2}$. By the theorem, $r(s) \sin \theta(s) =$ R for some constant $R \geq 0$. Note that $r(s) \geq R$.

Proposition 2. (i) If R = 0, then α is a meridian.

- (ii) R > 0. Then geodesic will go up for all s, as long as r > R, i.e. the z coordinate of α is increasing in s. Either α does not come close to any parallel of radius R, and α will go up for all s, or α will be close to a parallel C of radius R. Let C be the first such parallel above α. Then we have the following cases:
 - (a) C is a geodesic. Then α will not meet C and α will come arbitrarily close to C without intersecting C.
 - (b) C is not a geodesic. Then there is $\alpha(s_0) \in C$ for some s_0 and α will bounce off from C and will turn downward.

Assignment 9, Due Friday Nov 23

- (1) Let M be a regular surface in \mathbb{R}^3 with a continuous normal vector field **N**. Show that M is orientable as in the Definition 1.
- (2) Write down the differential equations for the geodesics on the torus:

 $\mathbf{X}(u, v) = ((a + r\cos v)\cos u, (a + r\cos v)\sin u, r\sin v)$

with a > r > 0.

Also, show that if α is a geodesic start at a point on the topmost parallel $(a \cos u, a \sin u, r)$ and is tangent to this parallel, then α will stay in the region with $-\pi/2 \le v \le \pi/2$.

(3) Let M be an orientable regular surface. Let $\mathbf{X} : U \to M$, $(u_1, u_2) \to \mathbf{X}(u_1, u_2)$, be a coordinate parametization, with U being an open set in \mathbb{R}^2 so that $\mathbf{X}_1, \mathbf{X}_2$ are positively oriented.

Suppose the first fundamental form in this coordinate is such that $g_{ij} = \exp(2f)\delta_{ij}$, where $\delta_{ij} = 1$ if i = j and is zero if $i \neq j$. $\mathbf{e_1} = \mathbf{X}_1/|\mathbf{X}_1|$, $\mathbf{e_2} = \mathbf{X}_2/|\mathbf{X}_2|$, and \mathbf{n} be such that α', \mathbf{n} are positively oriented. Let $\alpha(s)$ be a geodesic on M such that $\alpha(s) = \mathbf{X}(u_1(s), u_2(s))$. Let $\theta(s)$ be a smooth function on s such that $\alpha'(s) = \mathbf{e_1}(s)\cos\theta(s) + \mathbf{e_2}(s)\sin\theta(s)$, where $\mathbf{e_i}(s) = \mathbf{e_i}(\alpha(s))$. Show that

$$k_g == \left(-u'\frac{\partial f}{\partial v} + v'\frac{\partial f}{\partial u}\right) + \theta'.$$

(Note that if f = 1, i.e. M is a plane, then $k_g = \theta'$.)