1. Geodesic curvature on an orientable surface

Definition 1. Let M be a regular surface. M is said to be orientable
if there exist coordinate charts A = {(X®*) U,)} covering M such that
X*) o (XU))~1 (if defined) is orientation preserving: the Jacobian ma-
trix has positive determinant.

e Suppose M is orientable with coordinate charts A as in the
definition. For any p € M and let vy, v, be linearly independent
vectors in T,(M). vy, vy are said to be positively oriented if and
only if for any k with p € X®(Uy) the transformation matrix

from v, vy to ng), X;k) has positive determinant.

e Suppose M is orientable. Then a choice of coordinate charts
A as in the definition is called an orientation of M. There are
‘basically’ two orientations of an orientable surface.

e Given an orientation A, let us denote —A to be the opposite
orientation.

e Suppose M is orientable with orientation A. Let o be a regular
curve on M parametrized by arclength. Let n € T,,(M) be such
that o/, n are positively oriented. Then the geodesic curvature
is given by k, = (a”, n).

e The geodesic curvature will change sign if the orientation of M
is changed to the opposite orientation.

e Fix an orientation in M. Suppose the orientation of « is changed
to its 'megative’ then the geodesic curvature will change sign.

2. Geodesics of surfaces of revolution

Let (¢(v),0,%(v)) be a regular curve on the zz-plane such that:

(i) ¢(v) > 0, i.e. the curve does not intersect the z-axis.
(i) (¢)? + (¥,)? = 1, i.e. the curve is parametrized by arc length.

Consider the surface of revolution M given by

X(u,v) = (¢(v) cosu, p(v) sinu, ¥ (v)).

e The curve X(ug,v) where ug is a constant is called a meridian;
and
e the curve X(u,vg) where vy is a constant is called a parallel.

e The first fundamental form is given by:
gi1 = E = <Xu;Xu> = ¢27;
g2 = gn=F=(X,X,)=0
g = G= <XvaXv> = (¢v)2 + (@Zjv)Q =1
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e The Christoffel symbols are: T'l, = '}, = ¢,/¢, T2, = —¢o,
and all other Ffj are zeros.
o «t) = X(u(t),v(t)) is a geodesic if and only if

2¢,
u” + iu'"u' = 0,

’U” - ¢¢U<u/)2 = 0.

Corollary 1. Any meridian is a geodesic. A parallel X(u,vg) is a
geodesic if and only if ¢,(ve) = 0.

To study the behavior of general geodesics, we begin with the fol-
lowing lemma:

Lemma 1. Let a1(t),as(t) be smooth functions on (T1,Ts) C R such
that a? 4+ a3 = 1. For any ty € (T1,Ty) and 6y such that a;(ty) = cos by,
as(tg) = sinby, there exists unique a smooth function 6(t) with 0(ty) =
0o such that ai(t) = cosO(t) and as(t) = sinb(t).

Proof. (Sketch) Suppose 0 satisfies the condition. Then aj = —'sin 0,
ay = 0" cosf. Hence 8 = a,a,—asa). From this we have uniqueness. To
prove existnce, fix ty € (71, Ts) and let 6 be such that cosfy = a1(0),
sinfy = a2(0). Let

¢
0(t) = 0y + / (a1aly — asaly)dr.

to
Let f = (a; — cos0)? + (az — sin6)?, with then
I =2(a; — cosB)(a] +sin8') + 2(az — sin ) (ay — cos 66")
=2 (a1a} + asal, — a} cosf — alysin @ + 0'(ay sin 6 — as cos 0))
=2 (—a cos — a,sin O + (ajay, — azal)(a; sinf — ay cosh))
=0
because a? + a3 = 1. So 6 is a smooth function and is a required

function. O

Now let a(s) = X(u(s),v(s)) be a geodesic on M parametrized by
arc length. Let e; = X, /|X,| and es = X, /|X,|. Then e, e, are
orthonormal. Let

o = aeq + aqzes.
By the lemma there exists smooth function #(s) such that a; = sin#@,
as = 0. Note that 0 is the angle between o and the meridian.

Proposition 1 (CLAIRAUT’S THEOREM). r(s)sin 6(s) is constant along
«, where r(s) is the distance of a(s) from the z-awis.



Proof. (Sketch) Denote the 4% by o etc. Since r(s) = ¢(v(s)),
r' = g,
Also sinf = (o, e1) = /¢, so (sinf) = u"¢p + u'v'¢,.

(rsinf) =g, v'u'¢ +u" ¢ + P u'v

=¢ (u” + %u’v’)
=0.

O

Let us analyse a geodesic a(s), 0 < s < L < oo, on the surface
of revolution parametrized by arc length. Let us assume that 1(v) is
increasing. Let r(s) and 6(s) be as in Clairaut’s Theorem. Let 6, =
0(0). We may assume that 0 < 6y < 7. By the theorem, r(s)sinf(s) =
R for some constant R > 0. Note that r(s) > R.

Proposition 2. (i) If R =0, then « is a meridian.

(ii)) R > 0. Then geodesic will go up for all s, as long as r > R,
i.e. the z coordinate of « is increasing in s. Fither o does not
come close to any parallel of radius R, and o will go up for all
s, or a will be close to a parallel C of radius R. Let C' be the
first such parallel above oo. Then we have the following cases:
(a) C is a geodesic. Then a will not meet C' and o will come

arbitrarily close to C without intersecting C'.
(b) C is not a geodesic. Then there is a(sy) € C for some s
and o will bounce off from C' and will turn downward.

Assignment 9, Due Friday Nov 23

(1) Let M be a regular surface in R® with a continuous normal
vector field N. Show that M is orientable as in the Definition
1.

(2) Write down the differential equations for the geodesics on the
torus:

X(u,v) = ((a + rcosv) cosu, (a + rcosv) sinu, rsinv)

with a > r > 0.

Also, show that if « is a geodesic start at a point on the top-
most parallel (acosu,asinu,r) and is tangent to this parallel,
then o will stay in the region with —7/2 < v < 7/2.

(3) Let M be an orientable regular surface. Let X : U — M,
(u1,us) — X(ug,uz), be a coordinate parametization, with U
being an open set in R? so that X;, X, are positively oriented.



Suppose the first fundamental form in this coordinate is such
that g;; = exp(2f)d;;, where ¢;; = 1 if i = j and is zero if
i # 7. e1 = X1/|X4], e2 = X3/|X3|, and n be such that o/, n
are positively oriented. Let a(s) be a geodesic on M such that
a(s) = X(ui(s),us(s)). Let 0(s) be a smooth function on s
such that o/(s) = eq(s) cosO(s) + ea(s) sinf(s), where e;(s) =
ei(a(s)). Show that

- af ,0f ,
by == ( 81} 8u) +4.

(Note that if f =1, i.e. M is a plane, then k, = 6".)



