
1. Geodesic curvature on an orientable surface

Definition 1. Let M be a regular surface. M is said to be orientable
if there exist coordinate charts A = {(X(k), Uk)} covering M such that
X(k) ◦ (X(j))−1 (if defined) is orientation preserving: the Jacobian ma-
trix has positive determinant.

• Suppose M is orientable with coordinate charts A as in the
definition. For any p ∈M and let v1,v2 be linearly independent
vectors in Tp(M). v1,v2 are said to be positively oriented if and
only if for any k with p ∈ X(k)(Uk) the transformation matrix

from v1,v2 to X
(k)
1 ,X

(k)
2 has positive determinant.

• Suppose M is orientable. Then a choice of coordinate charts
A as in the definition is called an orientation of M . There are
‘basically’ two orientations of an orientable surface.

• Given an orientation A, let us denote −A to be the opposite
orientation.

• SupposeM is orientable with orientation A. Let α be a regular
curve onM parametrized by arclength. Let n ∈ Tp(M) be such
that α′,n are positively oriented. Then the geodesic curvature
is given by kg = ⟨α′′,n⟩.

• The geodesic curvature will change sign if the orientation of M
is changed to the opposite orientation.

• Fix an orientation inM . Suppose the orientation of α is changed
to its ’negative’ then the geodesic curvature will change sign.

2. Geodesics of surfaces of revolution

Let (ϕ(v), 0, ψ(v)) be a regular curve on the xz-plane such that:

(i) ϕ(v) > 0, i.e. the curve does not intersect the z-axis.
(ii) (ϕv)

2 + (ψv)
2 = 1, i.e. the curve is parametrized by arc length.

Consider the surface of revolution M given by

X(u, v) = (ϕ(v) cos u, ϕ(v) sin u, ψ(v)).

• The curve X(u0, v) where u0 is a constant is called a meridian;
and

• the curve X(u, v0) where v0 is a constant is called a parallel.

• The first fundamental form is given by: g11 = E = ⟨Xu,Xu⟩ = ϕ2, ;
g12 = g21 = F = ⟨Xu,Xv⟩ = 0
g22 = G = ⟨Xv,Xv⟩ = (ϕv)

2 + (ψv)
2 = 1.
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• The Christoffel symbols are: Γ1
12 = Γ1

21 = ϕv/ϕ, Γ
2
11 = −ϕϕv

and all other Γk
ij are zeros.

• α(t) = X(u(t), v(t)) is a geodesic if and only if u′′ +
2ϕv

ϕ
u′v′ = 0,

v′′ − ϕϕv(u
′)2 = 0.

Corollary 1. Any meridian is a geodesic. A parallel X(u, v0) is a
geodesic if and only if ϕv(v0) = 0.

To study the behavior of general geodesics, we begin with the fol-
lowing lemma:

Lemma 1. Let a1(t), a2(t) be smooth functions on (T1, T2) ⊂ R such
that a21+a

2
2 = 1. For any t0 ∈ (T1, T2) and θ0 such that a1(t0) = cos θ0,

a2(t0) = sin θ0, there exists unique a smooth function θ(t) with θ(t0) =
θ0 such that a1(t) = cos θ(t) and a2(t) = sin θ(t).

Proof. (Sketch) Suppose θ satisfies the condition. Then a′1 = −θ′ sin θ,
a′2 = θ′ cos θ. Hence θ′ = a1a

′
2−a2a′1. From this we have uniqueness. To

prove existnce, fix t0 ∈ (T1, T2) and let θ0 be such that cos θ0 = a1(0),
sin θ0 = a2(0). Let

θ(t) = θ0 +

∫ t

t0

(a1a
′
2 − a2a

′
1)dτ.

Let f = (a1 − cos θ)2 + (a2 − sin θ)2, with then

f ′ =2(a1 − cos θ)(a′1 + sin θθ′) + 2(a2 − sin θ)(a′2 − cos θθ′)

=2 (a1a
′
1 + a2a

′
2 − a′1 cos θ − a′2 sin θ + θ′(a1 sin θ − a2 cos θ))

=2 (−a′1 cos θ − a′2 sin θ + (a1a
′
2 − a2a

′
1)(a1 sin θ − a2 cos θ))

=0

because a21 + a22 = 1. So θ is a smooth function and is a required
function. �

Now let α(s) = X(u(s), v(s)) be a geodesic on M parametrized by
arc length. Let e1 = Xu/|Xu| and e2 = Xv/|Xv|. Then e1, e2 are
orthonormal. Let

α′ = a1e1 + a2e2.

By the lemma there exists smooth function θ(s) such that a1 = sin θ,
a2 = θ. Note that θ is the angle between α′ and the meridian.

Proposition 1 (Clairaut’s Theorem). r(s) sin θ(s) is constant along
α, where r(s) is the distance of α(s) from the z-axis.
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Proof. (Sketch) Denote the dα
ds

by α′ etc. Since r(s) = ϕ(v(s)),

r′ = ϕvv
′.

Also sin θ = ⟨α′, e1⟩ = u′ϕ, so (sin θ)′ = u′′ϕ+ u′v′ϕv.

(r sin θ)′ =ϕvv
′u′ϕ+ u′′ϕ+ ϕvu

′v′

=ϕ

(
u′′ +

2ϕv

ϕ
u′v′

)
=0.

�
Let us analyse a geodesic α(s), 0 ≤ s < L ≤ ∞, on the surface

of revolution parametrized by arc length. Let us assume that ψ(v) is
increasing. Let r(s) and θ(s) be as in Clairaut’s Theorem. Let θ0 =
θ(0). We may assume that 0 ≤ θ0 ≤ π

2
. By the theorem, r(s) sin θ(s) =

R for some constant R ≥ 0. Note that r(s) ≥ R.

Proposition 2. (i) If R = 0, then α is a meridian.
(ii) R > 0. Then geodesic will go up for all s, as long as r > R,

i.e. the z coordinate of α is increasing in s. Either α does not
come close to any parallel of radius R, and α will go up for all
s, or α will be close to a parallel C of radius R. Let C be the
first such parallel above α. Then we have the following cases:
(a) C is a geodesic. Then α will not meet C and α will come

arbitrarily close to C without intersecting C.
(b) C is not a geodesic. Then there is α(s0) ∈ C for some s0

and α will bounce off from C and will turn downward.

Assignment 9, Due Friday Nov 23

(1) Let M be a regular surface in R3 with a continuous normal
vector field N. Show that M is orientable as in the Definition
1.

(2) Write down the differential equations for the geodesics on the
torus:

X(u, v) = ((a+ r cos v) cos u, (a+ r cos v) sin u, r sin v)

with a > r > 0.
Also, show that if α is a geodesic start at a point on the top-

most parallel (a cosu, a sinu, r) and is tangent to this parallel,
then α will stay in the region with −π/2 ≤ v ≤ π/2.

(3) Let M be an orientable regular surface. Let X : U → M ,
(u1, u2) → X(u1, u2), be a coordinate parametization, with U
being an open set in R2 so that X1,X2 are positively oriented.
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Suppose the first fundamental form in this coordinate is such
that gij = exp(2f)δij, where δij = 1 if i = j and is zero if
i ̸= j. e1 = X1/|X1|, e2 = X2/|X2|, and n be such that α′,n
are positively oriented. Let α(s) be a geodesic on M such that
α(s) = X(u1(s), u2(s)). Let θ(s) be a smooth function on s
such that α′(s) = e1(s) cos θ(s) + e2(s) sin θ(s), where ei(s) =
ei(α(s)). Show that

kg ==

(
−u′∂f

∂v
+ v′

∂f

∂u

)
+ θ′.

(Note that if f = 1, i.e. M is a plane, then kg = θ′.)


