
1. Further properties of Geodesics

Proposition 1. Isometry will carry geodesics to geodesics.

Theorem 1. At any point p ∈ M , and any vector v ∈ Tp(M), there
is a geodesic α(t) defined on (−ϵ, ϵ) for some ϵ > 0 such that α(0) = p
and α′(0) = v.

The theorem follows from the following theorem in ODE.

Theorem 2. Let U be an open set in Rn and let Ia = (−a, a) ⊂ R,
with a > 0. Suppose F : U × Ia → Rn is a smooth map. Then for any
x0 ∈ U , there is 0 < δ < a, such that the following IVP has a solution:{

x′(t) = F(x(t), t), −δ < t < δ;
x(0) = x0.

Moreover, the solutions of the IVP is unique. Namely, if x1 and x2

are two solutions of the above IVP on (−b, b) for some 0 < b < a, then
x1 = x2.

2. The energy of a curve

Let M be a regular surface and α be a smooth curve defined on [a, b].
Then energy of α is defined to by

(1) E(α) =
1

2

∫ b

a

⟨α′, α′⟩dt.

⟨α′, α′⟩ is called the energy density.
Remark: With the above notation, (ℓ(α))2 ≤ (b − a)E(α), and

equality holds if and only if α is parametrized proportional to arc
length.

Theorem 3. Suppose α is a smooth curve defined on [a, b]. α is an
extremal of E if and only if α is a geodesic.

Example: Consider the surface of revolution u1 ↔ u, u2 ↔ v:

X(u, v) = (f(v) cos u, f(v) sinu, g(v))

f > 0. We want to find the equations of geodesics.
Method 1: g11 = f 2, g12 = 0, g22 = (f ′)2 + (g′)2. The Christoffel

symbols are given by

Γ1
11 = 0,Γ2

11 = − ff ′

(f ′)2 + (g′)2
,Γ1

12 =
ff ′

f 2
;

Γ2
12 = 0,Γ1

22 = 0,Γ2
22 =

f ′f ′′ + g′g′′

(f ′)2 + (g′)2
.

1
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Hence geodesic equations are

ü+
2ff ′

f 2
u̇v̇ = 0

and

v̈ − ff ′

(f ′)2 + (g′)2
u̇2 +

f ′f ′′ + g′g′′

(f ′)2 + (g′)2
v̇2 = 0.

Method 2: On the other hand, the energy density of a curve is given
by

L =
1

2
(f 2(u̇)2 + ((f ′)2 + ((g′)2)(v̇)2).

Then
∂

∂u
L = 0,

∂

∂v
L = ff ′u̇2 + (f ′f ′′ + g′g′′)v̇2;

∂

∂u̇
L = f 2u̇,

∂

∂v̇
L = ((f ′)2 + ((g′)2)v̇.

The E-L equations are the geodesic equations.
Assignment 8, Due Friday, November 16

(1) (a) Find the absolute value of the curvature of the ellipse:

x2

a2
+

y2

b2
= 1

at the points (a, 0) and (0, b). Assuming a, b > 0.
(b) Intersect the cylinder C = {(x, y, z)|x2 + y2 = 1} with a

plane passing through the x-axis and making an angle θ with
the xy-plane. Show that the curve α is an ellipse. Also find
the absolute value of the geodesic curvature of α at the points
where α meets their axes (i.e. major and minor axes of the
ellipse).

(2) Prove Theorem 3: A regular curve α(t) = X(u1(t), u2(t)) in a
regular surface is a geodesic if and only if u1(t), u2(t) satisfy the
system of geodesic equations.

(3) Let α be a regular curve in a regular surface such that α′′ ̸= 0.
Suppose α is a geodesic and α is contained in a plane. Prove
that α′ is a principal direction.

(4) Let p ∈ M be a point in a regular surface. Suppose any geodesic
passing through p is a plane curve. (Different geodesics may be
contained in different planes). Prove that p is an umbilical
point. What can you say if every point of M satisfies this
property?
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α′′ =u′′
1X1 + u′′

2X2 + (u′
1)

2X11 + 2u′
1u

′
2X12 + (u′

2)
2X22)

=X1

(
u′′
1 + Γ1

11(u
′
1)

2 + 2Γ1
12u

′
1u

′
2 + Γ1

22(u
′
2)

2
)

+X2

(
u′′
2 + Γ2

11(u
′
1)

2 + 2Γ2
12u

′
1u

′
2 + Γ2

22(u
′
2)

2
)

+ cn

=
2∑

k=1

Xk

(
u′′
k +

2∑
i,j=1

Γk
iju

′
iu

′
j

)
+ cn

kg =
⟨α′ × α′′,X1 ×X2⟩√

det(gij)

=
1√

det(gij)
(⟨α′,X1⟩⟨α′′,X2⟩ − ⟨α′,X2⟩⟨α′′,X1⟩)

=
1√

det(gij)

[
(g11u

′
1 + g12u

′
2)

(
g12

(
u′′
1 +

2∑
i,j=1

Γ1
iju

′
iu

′
j

)
+ g22

(
u′′
2 +

2∑
i,j=1

Γ2
iju

′
iu

′
j

))

− (g12u
′
1 + g22u

′
2)

(
g11

(
u′′
1 +

2∑
i,j=1

Γ1
iju

′
iu

′
j

)
+ g12

(
u′′
2 +

2∑
i,j=1

Γ2
iju

′
iu

′
j

))]

=
√

det(gij)

[
u′
1

(
u′′
2 +

2∑
i,j=1

Γ2
iju

′
iu

′
j

)
− u′

2

(
u′′
1 +

2∑
i,j=1

Γ1
iju

′
iu

′
j

)]
=
√

det(gij)

[
u′
1u

′′
2 − u′

2u
′′
1 + Γ2

11(u
′
1)

3 − Γ1
22(u

′
2)

3 +
(
2Γ2

12 − Γ1
11

)
(u′

1)
2u′

2

−
(
2Γ1

12 − Γ2
22

)
(u′

2)
2u′

1

]
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More intrinsic: Let e1 = α′ and e2 = n. Then

e2 = aX1 + bX2

|e2| = 1, ⟨e1, e2⟩ = 0 implies that

a2E + 2abF + b2G = 1; a⟨α′,X1⟩+ b⟨α′,X2⟩ = 0.

Let λ = ⟨α′,X1⟩, µ = ⟨α′,X2⟩. Assume µ ̸= 0, then

b = −λ

µ
a.

Hence

a2(E − 2
λ

µ
F +

λ2

µ2
G) = 1

So

a2 =
µ2

Eµ2 − 2λµF + λ2G
Let v be any vector, then

⟨v, e2⟩ =a⟨v,X1⟩+ b⟨v,X2⟩

=a⟨v,X1⟩ −
λ

µ
a⟨v,X2⟩

=
a

µ
(µ⟨v,X1⟩ − λ⟨v,X2⟩)

=
a

µ
(⟨α′,X2⟩⟨v,X1⟩ − ⟨α′,X1⟩⟨v,X2⟩)

=± 1

(Eµ2 − 2λµF + λ2G)
1
2

(⟨α′,X2⟩⟨v,X1⟩ − ⟨α′,X1⟩⟨v,X2⟩)

If X1 = αe1 + βe2, X2 = γe1 + δe2. Then

Eµ2 − 2λµF + λ2G =|X1|2⟨e1,X2⟩2 − 2⟨X1,X2⟩⟨e1,X2⟩⟨e1,X1⟩+ |X2|2⟨e1,X1⟩2

=(α2 + β2)γ2 + (γ2 + δ2)α2 − 2αγ(αγ + βδ)

=β2γ2 + α2δ2 − 2αβγδ

=(αδ − βγ)2

=EG− F 2.


