MAT 4030: DIFFERENTIAL GEOMETRY I 2018-19, 1st term

Instructor: Tam Luen Fai, Rm 704, AB1, tel: 39438066; email: lftam@math.cuhk.edu.hk

References:

Oprea: Differential geometry and its applications;

Do Carmo: Differential geometry of curves and surfaces;

Klingenberg: A course in Differential Geometry;

Spivak: A comprehensive introduction to Differential Geometry, Vol. 2

Hilbert and Cohbn-Vossen: Geometry and the imagination. (We will basically follow the book by Oprea.)

Assessment Scheme: Homework 10%; Midterm 30%, Final Exam 60%.

Assignment 1, Due 13/9/2018

(1) (The tractrix) Let $\alpha : (0, \pi) \to \mathbb{R}^2$ be given by

$$\alpha(t) = \left(\sin t, \cos t + \log \tan \frac{t}{2}\right).$$

(a) Prove that α is regular except at $t = \frac{\pi}{2}$.

(b) Prove that the length of the segment of the tangent of α between the point of tangency and the *y*-axis is constantly 1.

- (2) A regular curve $\alpha(s)$ parametrized by arc length is called a *cylindrical helix* if the is some constant vector **u** such that $\langle T, \mathbf{u} \rangle = \cos \theta_0$ is a constant. Prove that a regular curve α parametrized by arc length with $\kappa > 0$ is a cylindrical helix if and only if κ/τ is constant.
- (3) Assume that k(s) > 0, $\tau(s) \neq 0$ and $k'(s) \neq 0$ for all s for a regular curve $\alpha(s)$ parametrized by arc length. Show that α lies on a sphere if and only if

$$\rho^2 + (\rho')^2 \lambda^2 = \text{constant.}$$

where $\rho = 1/k(s), \lambda = 1/\tau$.

(*Hint*: Necessity: Differentiate $|\alpha|^2$ three times to obtain $\alpha = -\rho N - \rho' \lambda B$. Sufficiency: Show that $\beta = \alpha + \rho N - \rho' \Gamma B$ is constant.)

1. The Frenet formula

Let $\alpha(s)$ be the regular curve parametrized by arc length. Let $\vec{T} = \alpha'$. Then

$$k(s) := |T'|(s) \text{ (curvature)};$$

$$N(s) := \frac{1}{k(s)}T'(s) \text{ (normal, if } k > 0);$$

$$B(s) := T(s) \times N(s) \text{ (binormal, if } k > 0).$$

Fact: $B' = -\tau N$, τ is called the torsion of α .

Theorem 1. (Frenet formula) Let α be a regular curve with curvature k > 0. Then

$$\left(\begin{array}{c}T\\N\\B\end{array}\right)' = \left(\begin{array}{cc}0&k&0\\-k&0&\tau\\0&-\tau&0\end{array}\right) \left(\begin{array}{c}T\\N\\B\end{array}\right).$$

We summarize some properties on curves:

Theorem 2. Let α be a regular curves in \mathbb{R}^3 parametrized by arc length.

- (i) Suppose the curvature $k \equiv 0$ if and only if α is a straight line.
- (ii) Suppose the curvature k > 0 and the torsion $\tau \equiv 0$ if and only if α is a plane curve.
- (iii) Suppose the curvature $k = k_0 > 0$ is a constant and $\tau \equiv 0$, then α is a circular arc with radius $1/k_0$.
- (iv) Suppose the curvature k > 0 and the torsion $\tau \neq 0$ everywhere. α lies on s sphere if and only if $\rho^2 + (\rho')^2 \lambda^2 = constant$, where $\rho = 1/k$ and $\lambda = 1/\tau$.
- (v) Suppose the curvature $k = k_0 > 0$ is a constant and $\tau = \tau_0$ is a constant. Then α is a circular helix.
- (vi) Suppose α is defined on [a, b]. Let $\mathbf{p} = \alpha(a)$ and $\mathbf{q} = \alpha(b)$. Then the length l of α satisfies $l \leq |\mathbf{p} - \mathbf{q}|$. Moreover, equality holds if and only if α is the straight line from \mathbf{p} to \mathbf{q} .

2. Some results of the local theory of curves

Theorem 3. Let k(s) > 0 and $\tau(s)$ be smooth function on (a, b). There exists a regular curve $\alpha : (a, b) \to \mathbb{R}^3$ with $|\alpha'| = 1$, such that the curvature and torsion of α are k, τ respectively.

Moreover, α is unique in the sense that if β is another curve satisfying the above conditions, then $\beta(s) = A\alpha(s) + \vec{c}$ for some constant orthogonal matrix A and some constant vector \vec{c} . **Theorem 4.** Let $\alpha : I \to \mathbb{R}^3$ be a regular curve parametrized by arclength so that k > 0. Assume $0 \in I$ and $T(0) = e_1, N = e_2, B = e_3$, where $\{e_i\}$ is the standard ordered basis for \mathbb{R}^3 . Then for |s| small, $\alpha(s) = (x(s), y(s), z(s))$ is given by

$$\begin{cases} x(s) = s - \frac{1}{6}k^2s^3 + O(|s|^4) \\ y(s) = \frac{1}{2}ks^2 + \frac{1}{6}k's^3 + O(|s|^4) \\ z(s) = \frac{1}{6}k\tau s^3 + O(|s|^4). \end{cases}$$

3. Existence and uniqueness theorems in ODE

Ref: Ordinary differential equations, Birkoff and Rota

We only consider the special case of linear ODE. Let $A(t) = (a_{ij}(t))_{n \times n}$ be a smooth family $n \times n$ matrix, $t \in [a, b]$. Consider the following initial valued problem (IVP): Given A and a constant $\mathbf{x}_0 \in \mathbb{R}^n$, to find $\mathbf{x} : [a, b] \to \mathbb{R}^n$ satisfying:

$$\begin{cases} \mathbf{x}'(t) = A(t)\mathbf{x}(t), & t \in [a, b]; \\ \mathbf{x}(a) = \mathbf{x}_0. \end{cases}$$

Theorem 5. Given any $\mathbf{x}_0 \in \mathbb{R}^n$, the exists a unique solution of the above *IVP*.

Proof. (Sketch) For simplicity let us assume a = 0.

Existence: Define inductively, with $\mathbf{x}_0(t) = \mathbf{x}_0$ for all t, and

$$\mathbf{x}_{k+1}(t) = \mathbf{x}_0 + \int_0^t A(\tau) \mathbf{x}_k(\tau) d\tau$$

for $k \ge 0$. Let $M = \sup_{t \in [a,b]} ||A||(t)$ and $||A(t)||^2 = tr(AA^T(t))$. For $k \ge 1$, we have

$$|\mathbf{x}_{k+1}(t) - \mathbf{x}_k(t)| \le M \int_0^t |\mathbf{x}_k(\tau) - \mathbf{x}_{k-1}(\tau)| d\tau.$$

Inductively, we have (why?)

$$\begin{aligned} |\mathbf{x}_{k+1}(t) - \mathbf{x}_{k}(t)| &\leq M^{k} \int_{0}^{t} \int_{0}^{\tau_{k-1}} \dots \int_{0}^{\tau_{2}} \int_{0}^{\tau_{1}} |\mathbf{x}_{1}(\tau_{1}) - \mathbf{x}_{0}(\tau_{1})| d\tau_{1} d\tau_{2} \dots d\tau_{k-1} d\tau_{k} \\ &\leq \frac{M^{k} b^{k} S}{k!} \end{aligned}$$

where integration is over the domain $t \ge \tau_k \ge \cdots \ge \tau_1$ and $S = \sup_{t \in [0,b]} |\mathbf{x}_1(t) - \mathbf{x}_0(t)|$.

Hence $\sum_{k=1}^{\infty} |\mathbf{x}_{k+1}(t) - \mathbf{x}_k(t)| \leq C$ for some constant C for all $t \in [0, b]$. This implies that $\mathbf{x}_k \to \mathbf{x}_{\infty}$ uniformly on [0, b] which satisfies:

$$\mathbf{x}_{\infty}(t) = \mathbf{x}_0 + \int_0^t A(\tau) \mathbf{x}_{\infty}(\tau) d\tau,$$

(why?) Now \mathbf{x}_∞ is the solution of the above IVP.

Uniquess: Sufficient to prove that if $\mathbf{x}_0 = \mathbf{0}$, then any solution must be trivial. So let \mathbf{x} be such a solution, then

$$\frac{d}{dt}||\mathbf{x}||^2 = 2\langle A\mathbf{x}, \mathbf{x} \rangle \le 2M||\mathbf{x}||^2.$$

Hence

$$\frac{d}{dt} \left(\exp(-2Mt) ||\mathbf{x}||^2 \right) \le 0.$$

This will imply that $||\mathbf{x}||^2 \equiv 0$. (Why?)