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Assignment 6, Due Friday Nov 2, 2018

Prove that if X is an orthogonal parametrization, i.e. F' = 0,
then the Gaussian curvature is given by:
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Suppose in addition ¥ = G everywhere, then
K =—e 2Af
where f is such that E = €* (i.e. f = logE), and A is the
Laplacian operator:
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Compute the Christoffel symbols for a surface of revolution:
X(u',u®) = (f(u?) cosu', f(u?)sinu', g(u?))

with f > 0.
Verify that the surfaces:

X(u,v) = (ucosv,usinv, logu)
and
Y (u,v) = (ucosv,usinv,v)
have equal Gaussian curvature at that points X(u,v), Y (u,v)
but the coefficients of the first fundamental forms at points
X(u,v), Y (u,v) are not the same.



