Solution to Homework 5

Sec. 5.4
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is not in W. Hence, W is not a T-invariant subspace of V.

2. (e) No. Note that A = (1 O) is in W, but

3. Note that T': V' — V is a linear operator on V. To check that W is a
T-invariant subspace of V', we need to know if T'(w) € W for any w € W.

(a) Since we have
T0)=0€e{0} and T(v)eV,

so both of {0} and V to be T-invariant subspaces of V.

(b) Note that 0 € N(T'). For any u € N(T), we have
T(u) =0 € N(T).
Hence, N(T) is a T-invariant subspace of V.
For any v € R(T), as R(T) C V, we have v € V. So, by definition,
T(v) € R(T).
Hence, R(T) is also a T-invariant subspace of V.

(¢) Note that for any v € Ey, \v is a scalar multiple of v, so Av € E) as
FE), is a subspace. So we have

T(v) = Av € Ej.
Hence, E) is a T-invariant subspace of V.

4. For any w in W, we know that T'(w) is in W as W is a T-invariant subspace
of V. Then, by induction, we know that T%(w) is also in W for any k.
Suppose ¢(T) = apT* + --- + a1 T + ag, we have

9(T)(w) = axT*(w) + -+ + arT(w) + ap(w) € W
because it is just a linear combination of elements in W.

Hence, W is a g(T')-invariant subspace of V.



6. (d) To find an ordered basis for the T-cyclic subspace generated by the
vector z, we check if T%(2) is spanned by {z,T(2),...,T*71(2)}. By
direct calculation, we have the following.

=(1 o)
=5 3) (1 )= 3)
ro=ran=(; ) =0 5

We see that T2 (z) = 37'(z), so the dimension of the T-cyclic subspace
generated by z is just 2 and {z, T(z)}, which is { <(1) é) , (; é) },

is a basis for the subspace.
18. (a) Note that f(t) = det(A —¢I) and
ap = f(0) = det(A).

Hence, A is invertible if and only if ag # 0.

(b) Suppose A is invertible. By (a), we have ag # 0. By Cayley-Hamilton
Theorem, we have f(A) = O, where O is the n X n zero matrix.

fA) = (-D)"A" + an 1 AV 4+ a1 A+ agl =0
(=1)"A™ + Un 1 A"V ag A= —apl
A ((‘DnAn_l tan 1AV 4t a1I) = —agl
1

gy ((—1)"An*1 —|—an_1An72 —|—~~'+a1[) — A1
0

(c¢) To use the result of (b), we need to find the characteristic polynomial
of A and compute A%, A! and I (as n is now 3).

det(A—tI) =1 —8)2—t)(—1—t) = —t>+ 282 +t —2

1 0 0 1 2 1 1 6 6
I=|0 1 0|, A=(0 2 3|, A*2=|0 4 3],
0 0 1 0 0 -1 0 0 1
By the formula, we can compute A~! directly.
1 1 2 =2 —4
= [-A+24+1]=-|0 1 3
(=2) 2\0 0 -2



19. For 1 x 1 matrices, the statement obviously holds.
det(A —tI) = —ag — t = (—1)"(ao + t')

Suppose the statement holds for (m—1)x (m—1) matrices, we want to show
that the statement is also true for m x m matrices. For an m x m matrix
A, we find the characteristic polynomial by expanding the determinant
along the first row.

—t 0 0 0 —ay
1 —t 0 0 —aq
0 1 0 0 —as
det(A —tI) = .
0 0 1 —t —Cm—2
0 0 0 1 —apm_1—1t
t - 0 0 —a
1 --- 0 0 —as
= (—t)det | : T :
o --- 1 =t —Qpy—2
0 -+ 0 1 —am--—t
(—1)m=1(ay+ast+-+am_1tm—2+tm—1)
1 -t --- 0 O
o 1 --- 0 O
(—ao)(—1)*"det :
0 O 1 —t
0 O 0 1

= (—t) ((—1)m_1 (a1 +ast+ -+ A1t % + tm_l))

+ (=1)*ag
= (=1)™(ao + art + -+ ap 1t ™)
Hence, by induction, the statement holds for any k x k matrices.
23. Let’s prove the statement by induction on k. When k = 1, it is obviously

true.

Assume the statement hold for k = m—1. When k = m, if v1+vo+- - -+v,,
is in W, we want to show that v; € W for all .

Note that W is a T-invariant subspace of V', write u = v1 +vo + - - - + Uy,
we have T'(u) € W, that is

Av1 + Agvg + -+ A, € WL



24.

25.

For a particular v;, we know that \;u € W as u is in W. Consider
T(u) — A\;u, note that T'(u) — \ju € W as T(u) and A\;u are in W, that is

M =2+ A =X)va+- -+ A= A)vy, €W

As eigenvalues are distinct, A; — A; # 0 for each j # ¢. So each term is a
non-zero multiple of an eigenvector of T', which is also an eigenvector. Now
that their sum is in W, using the induction hypothesis, each (A; — A;)v;
is in W, so is each v;. Lastly, this particular v; is also in W.

Vi =U— Z v; €W
J#i
Hence, by induction, the statement is true.

Suppose T' is a diagonalizable linear operator on V. Then V is a direct
sum of eigenspaces corresponding to distinct eigenvalues.

V:E)\IEBE,\QEB-“@E)\k

Let Tw be the restriction of 7" on W. Counsider Wy, = W N E,,. For
every w € W, note that w is also in V', so w can be expressed as a linear
combination of eigenvectors of distinct eigenvalues.

w = aju; + aguz + - - - + arug, where u; € Ej,

So u; is in both W and Ej,, that is, u; € W N Ey, = W),. Hence, W is a
direct sum of W,.

W=Wy, &W,, & ---dW,,

But for each W,,, we can find a basis 5, for Wy,. Then J,; 55, will be a
basis consisting of eigenvectors Ty . In other words, Ty is diagonalizable.

(a) For any eigenvalue \; of T and v € E),, we have the following.
TU(v) =UT(v) = U (v)

So we see that U(v) is an eigenvector of T', that is, U(v) € Ey,. That
means FE), is an U-invariant subspace of V. Then, by the above
exercise, the restriction of U on E}, is digonalizable. In other words,
we may find a basis [, consisting of eigenvectors of restriction of U
on Ey,. Now consider the union g of all these B, .

ﬁ:Umi

Note that it consists of eigenvectors of both T" and U as ( are eigen-
vectors from E), and (), are eigenvectors of U by construction.
Hence, T and U are simultaneously diagonalizable.



(b) “If A and B are diagonalizable matrices of dimension nxn such that
BA = AB, then A and B are simultaneously diagonalizable.”

To prove the statement, we consider the linear transformations L4
and L. As A and B are diagonalizable, L 4 and Lg are also diago-
nalizable. Note that LgL4 = LaLg, by (a), we know that L4 and
Lp are simultaneously diagonalizable. By previous exercise (Sec. 5.2
Exercise 17), we know that A and B are simultaneously diagonaliz-
able.



