
Solution to Homework 5

Sec. 5.4

2. (e) No. Note that A =

(
1 0
0 2

)
is in W , but

T (A) =

(
0 1
1 0

)(
1 0
0 2

)
=

(
0 2
1 0

)
is not in W . Hence, W is not a T -invariant subspace of V .

3. Note that T : V → V is a linear operator on V . To check that W is a
T -invariant subspace of V , we need to know if T (w) ∈W for any w ∈W .

(a) Since we have

T (0) = 0 ∈ {0} and T (v) ∈ V,

so both of {0} and V to be T -invariant subspaces of V .

(b) Note that 0 ∈ N(T ). For any u ∈ N(T ), we have

T (u) = 0 ∈ N(T ).

Hence, N(T ) is a T -invariant subspace of V .

For any v ∈ R(T ), as R(T ) ⊂ V , we have v ∈ V . So, by definition,

T (v) ∈ R(T ).

Hence, R(T ) is also a T -invariant subspace of V .

(c) Note that for any v ∈ Eλ, λv is a scalar multiple of v, so λv ∈ Eλ as
Eλ is a subspace. So we have

T (v) = λv ∈ Eλ.

Hence, Eλ is a T -invariant subspace of V .

4. For any w in W , we know that T (w) is in W as W is a T -invariant subspace
of V . Then, by induction, we know that T k(w) is also in W for any k.
Suppose g(T ) = akT

k + · · ·+ a1T + a0, we have

g(T )(w) = akT
k(w) + · · ·+ a1T (w) + a0(w) ∈W

because it is just a linear combination of elements in W .

Hence, W is a g(T )-invariant subspace of V .
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6. (d) To find an ordered basis for the T -cyclic subspace generated by the
vector z, we check if T k(z) is spanned by {z, T (z), . . . , T k−1(z)}. By
direct calculation, we have the following.

z =

(
0 1
1 0

)
T (z) =

(
1 1
2 2

)(
0 1
1 0

)
=

(
1 1
2 2

)
T 2(z) = T (T (z)) =

(
1 1
2 2

)(
1 1
2 2

)
=

(
3 3
6 6

)
We see that T 2(z) = 3T (z), so the dimension of the T -cyclic subspace

generated by z is just 2 and {z, T (z)}, which is

{(
0 1
1 0

)
,

(
1 1
2 2

)}
,

is a basis for the subspace.

18. (a) Note that f(t) = det(A− tI) and

a0 = f(0) = det(A).

Hence, A is invertible if and only if a0 6= 0.

(b) Suppose A is invertible. By (a), we have a0 6= 0. By Cayley-Hamilton
Theorem, we have f(A) = O, where O is the n× n zero matrix.

f(A) = (−1)nAn + an−1A
n−1 + · · ·+ a1A+ a0I = O

(−1)nAn + an−1A
n−1 + · · ·+ a1A = −a0I

A
(
(−1)nAn−1 + an−1A

n−2 + · · ·+ a1I
)

= −a0I

− 1

a0

(
(−1)nAn−1 + an−1A

n−2 + · · ·+ a1I
)

= A−1

(c) To use the result of (b), we need to find the characteristic polynomial
of A and compute A2, A1 and I (as n is now 3).

det(A− tI) = (1− t)(2− t)(−1− t) = −t3 + 2t2 + t− 2

I =

1 0 0
0 1 0
0 0 1

 , A =

1 2 1
0 2 3
0 0 −1

 , A2 =

1 6 6
0 4 3
0 0 1

 ,

By the formula, we can compute A−1 directly.

A−1 = − 1

(−2)

[
−A2 + 2A+ I

]
=

1

2

2 −2 −4
0 1 3
0 0 −2


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19. For 1× 1 matrices, the statement obviously holds.

det(A− tI) = −a0 − t = (−1)1(a0 + t1)

Suppose the statement holds for (m−1)×(m−1) matrices, we want to show
that the statement is also true for m×m matrices. For an m×m matrix
A, we find the characteristic polynomial by expanding the determinant
along the first row.

det(A− tI) =



−t 0 · · · 0 0 −a0
1 −t · · · 0 0 −a1
0 1 · · · 0 0 −a2
...

...
. . .

...
...

...
0 0 · · · 1 −t −am−2
0 0 · · · 0 1 −am−1 − t



= (−t)det


−t · · · 0 0 −a1
1 · · · 0 0 −a2
...

. . .
...

...
...

0 · · · 1 −t −am−2
0 · · · 0 1 −am−1 − t


︸ ︷︷ ︸

(−1)m−1(a1+a2t+···+am−1tm−2+tm−1)

(−a0)(−1)k+1det


1 −t · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 −t
0 0 · · · 0 1


︸ ︷︷ ︸

1

= (−t)
(

(−1)
m−1

(a1 + a2t+ · · ·+ am−1t
m−2 + tm−1)

)
+ (−1)ka0

= (−1)m(a0 + a1t+ · · ·+ am−1t
m−1 + tm)

Hence, by induction, the statement holds for any k × k matrices.

23. Let’s prove the statement by induction on k. When k = 1, it is obviously
true.

Assume the statement hold for k = m−1. When k = m, if v1+v2+· · ·+vm
is in W , we want to show that vi ∈W for all i.

Note that W is a T -invariant subspace of V , write u = v1 + v2 + · · ·+ vm,
we have T (u) ∈W , that is

λ1v1 + λ2v2 + ·+ λmvm ∈W.
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For a particular vi, we know that λiu ∈ W as u is in W . Consider
T (u)− λiu, note that T (u)− λiu ∈W as T (u) and λiu are in W , that is

(λ1 − λi)v1 + (λ2 − λi)v2 + · · ·+ (λk − λi)vm ∈W

As eigenvalues are distinct, λj − λi 6= 0 for each j 6= i. So each term is a
non-zero multiple of an eigenvector of T , which is also an eigenvector. Now
that their sum is in W , using the induction hypothesis, each (λj − λi)vj
is in W , so is each vj . Lastly, this particular vi is also in W .

vi = u−
∑
j 6=i

vj ∈W

Hence, by induction, the statement is true.

24. Suppose T is a diagonalizable linear operator on V . Then V is a direct
sum of eigenspaces corresponding to distinct eigenvalues.

V = Eλ1 ⊕ Eλ2 ⊕ · · · ⊕ Eλk

Let TW be the restriction of T on W . Consider Wλi
= W ∩ Eλi

. For
every w ∈ W , note that w is also in V , so w can be expressed as a linear
combination of eigenvectors of distinct eigenvalues.

w = a1u1 + a2u2 + · · ·+ akuk, where ui ∈ Eλi

So ui is in both W and Eλi , that is, ui ∈W ∩Eλi = Wλi . Hence, W is a
direct sum of Wλi .

W = Wλ1 ⊕Wλ2 ⊕ · · · ⊕Wλk

But for each Wλi , we can find a basis βλi for Wλi . Then
⋃
i βλi will be a

basis consisting of eigenvectors TW . In other words, TW is diagonalizable.

25. (a) For any eigenvalue λi of T and v ∈ Eλi
, we have the following.

TU(v) = UT (v) = λiU(v)

So we see that U(v) is an eigenvector of T , that is, U(v) ∈ Eλi
. That

means Eλi
is an U -invariant subspace of V . Then, by the above

exercise, the restriction of U on Eλi
is digonalizable. In other words,

we may find a basis βλi
consisting of eigenvectors of restriction of U

on Eλi . Now consider the union β of all these βλi .

β =
⋃
i

βλi

Note that it consists of eigenvectors of both T and U as β are eigen-
vectors from Eλi and βλi are eigenvectors of U by construction.
Hence, T and U are simultaneously diagonalizable.
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(b) “If A and B are diagonalizable matrices of dimension n×n such that
BA = AB, then A and B are simultaneously diagonalizable.”

To prove the statement, we consider the linear transformations LA
and LB . As A and B are diagonalizable, LA and LB are also diago-
nalizable. Note that LBLA = LALB , by (a), we know that LA and
LB are simultaneously diagonalizable. By previous exercise (Sec. 5.2
Exercise 17), we know that A and B are simultaneously diagonaliz-
able.
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