Suggested Solution of Midterm of Differential Geometry

(1)(a)

Proof. We denote the unit tangent, principal normal and binormal of α by T, N, B respectively. Then we have

$$\alpha' = |\alpha'|T$$

$$\alpha'' = |\alpha'|'T + |\alpha'|T'$$

$$= |\alpha'|'T + |\alpha'|^2 kN$$

by Frenet Formula for non-unit speed curve. Then

$$\alpha' \times \alpha'' = k |\alpha'|^3 T \times N = k |\alpha'|^3 B.$$

Thus, we have

$$k = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}$$

.2

(b)

$$\begin{split} \alpha(t) &= (t, \frac{1+t}{t}, \frac{1-t^2}{t}) \\ \alpha' &= (1, \frac{-1}{t^2}, -\frac{1}{t^2} - 1), |\alpha'| = \sqrt{2}\sqrt{1 + \frac{1}{t^2} + \frac{1}{t^4}} \\ \alpha'' &= 2(0, \frac{1}{t^3}, \frac{1}{t^3}) \\ \alpha' &\times \alpha'' = \frac{1}{t^3}(1, -1, 1), |\alpha' \times \alpha''| = 2\sqrt{3}\frac{1}{|t|^3} \\ k &= \frac{|\alpha' \times \alpha''|}{|\alpha'|^3} = \frac{\sqrt{6}}{2}\frac{1}{(t^2 + 1 + \frac{1}{t^2})^{\frac{3}{2}}}. \end{split}$$

(2)

Proof. Let C be the circle such that AB is a chord of it and AB divide C into α and β where α has length l (we also denote the length of β by l'). Such a circle exists because l > AB. If r is the radius and θ is the angle subtended by AB, then $r\theta = l$ and $r\sin(\theta/2) = \frac{1}{2}AB$. The area of the circle is πr^2 . Note that $l + l' = 2\pi r$.

Consider any curve γ with length l joining A, B such that $\{\gamma, AB\}$ forms a Jordan curve. Then we consider the closed curve $\{\gamma, \beta\}$ with fixed length l+l', and let γ vary, β be fixed. By a general isoperimetric inequality, let $4\pi^2 r^2 = (l + l')^2 \ge 4\pi \mathcal{A}$ where \mathcal{A} is the area bounded by the curve $\{\gamma, \beta\}$. Therefore the largest possible area is πr^2 . Hecne if $\{\gamma, \beta\}$ bounds the largest area, we must have $(l + l')^2 \ge 4\pi \mathcal{A}$ and $\{\gamma, \beta\}$ must be a circle.

(3)(a)

Proof. Fix s_0 , and let A be a constant orthogonal matrix and \mathbf{v}_0 be a constant vector such that:

$$\begin{pmatrix} T_{\alpha}(s_0)\\N_{\alpha}(s_0)\\B_{\alpha}(s_0) \end{pmatrix} = A \begin{pmatrix} T_{\beta}(s_0)\\N_{\beta}(s_0)\\B_{\beta}(s_0) \end{pmatrix}$$

and $\alpha(s_0) = A\beta(s_0) + \mathbf{v}_0$. Let $\gamma(s) = A\beta(s) + \mathbf{v}_0$. Then one can check that the curvature and torsion of γ are still k and τ respectively. By the Frenet formula, the $T_{\gamma}, N_{\gamma}, B_{\gamma}$ and $T_{\alpha}, N_{\alpha}, B_a$ satisfy the same ODE and they are equal at $s = s_0$. Hence they are equal for all s. In particular, $\alpha'(s) = \gamma'(s)$. Since $\alpha(s_0) = \gamma(s_0)$, we have $\alpha(s) = A\beta(s) + \mathbf{v}_0$.

Γ	Г	Γ

(3)(b)

Proof. Let R = aT + bN + cB, then by the assumption

$$\left\{ \begin{array}{l} T' = R \times T \\ N' = R \times N \\ B' = R \times B \end{array} \right.$$

we have

$$\begin{cases} bN \times T + cB \times T = T' = kN \\ aT \times N + cB \times N = N' = -kT + \tau B \\ aT \times B + bN \times B = B' = -\tau N \end{cases}$$

One may apply inner product with N, T to the above equations, then we have $c = k, b = 0, a = \tau$. Therefore, $R = \tau T + kB$.

(4)(a) In the coordinate parametrization

$$X(u,v) = (\frac{4u}{A}, \frac{4v}{A}, \frac{2(u^2 + v^2)}{A}),$$

we have

$$X_u = \left(\frac{4(v^2 - u^2 + 4)}{A^2}, \frac{-8uv}{A^2}, \frac{16u}{A^2}\right)$$
$$X_v = \left(\frac{-8uv}{A^2}, \frac{4(u^2 - v^2 + 4)}{A^2}, \frac{16v}{A^2}\right)$$
$$E = \frac{16}{(u^2 + v^2 + 4)^2}, F = 0, G = \frac{16}{(u^2 + v^2 + 4)^2}$$

And

$$Area(\mathbb{S}^{2}) = \int_{\mathbb{R}^{2}} \sqrt{EG - F^{2}} du dv$$

= $\int_{\mathbb{R}^{2}} \frac{16}{(u^{2} + v^{2} + 4)^{2}} du dv$
= $\int_{0}^{\infty} \int_{0}^{2\pi} \frac{16}{(r^{2} + 4)^{2}} r dr d\theta$
= $2\pi \int_{0}^{\infty} \frac{16}{(r^{2} + 4)^{2}} r dr$
= 4π .

(5)(a)

Proof. Let $X: U \subset \mathbb{R}^2 \to M$ be a parametrization of p in M, and write $X(u,v) = (x(u,v), y(u,v), z(u,v)), (u,v) \in U$. Since $X_u \times X_v \neq 0$, we have one of the Jacobian determinants

$$rac{\partial(x,y)}{\partial(u,v)}, rac{\partial(y,z)}{\partial(u,v)}, rac{\partial(z,x)}{\partial(u,v)}$$

is not zero at $q \doteq X^{-1}(p)$. Suppose first that $\frac{\partial(x,y)}{\partial(u,v)}(q) \neq 0$, and consider the map $\pi \circ X : U \rightarrow X$ \mathbb{R}^2 where π is the projection $\pi(x, y, z) = (x, y)$. Then $\pi \circ X(u, v) =$ (x(u, v), y(u, v)). Then by inverse function theorem, there exist an open neighborhood of q, V_1 , in U and an open neighborhood of $\pi \circ X(q)$, V_2 , such that $F = \pi \circ X$ maps V_1 diffeomorphically onto V_2 . Now let $V = X(V_1)$, then V is an open neighborhood of p in M. Let $Y = X \circ F^{-1}$. Then Y is a coordinate parametrization near p. Now Y = (x(u(x, y), v(x, y)), y(u(x, y), v(x, y)), z(u(x, y), v(x, y)) = (x, y, f(x, y)).by the definition of F^{-1} .

(5)(b)

Proof. Now we have

$$X(u, v) = (x(u, v), y(u, v), f(x(u, v), y(u, v)))$$

$$X_u = (x_u, y_u, f_x x_u + f_y y_u)$$

$$X_v = (x_v, y_v, f_x x_v + f_y y_v).$$

Then (x_u, y_u) and (x_v, y_v) are linearly independent otherwise X_u and X_v are linearly dependent. By inverse function theorem, there are an open neighborhood O of (u_0, v_0) and an open neighborhood V of (x_0, y_0) such that $\pi \circ X : O \to V$ is a diffeomorphism.

(5)(c)

Proof. Let $p \in M$, $X : U \to M$, $(u, v) \mapsto (x, y, z)$ and $Y : V \to M$, $(\xi, \eta) \mapsto (x, y, z)$ be 2 coordinate parametrizations such that $p \in X(U) \cap Y(V) \doteq S$. Denote $U_1 = X^{-1}(S)$ and $V_1 = Y^{-1}(S)$, we want to show $Y^{-1} \circ X : U_1 \to V_1$ is a diffeomorphism. Now let $p' \in S$, by part (a) and (b)(we may assume the graph we obtain in part (a) is over xy-plane), we have $(u, v) \mapsto (x, y)$ is diffeomorphic near $X^{-1}(p')$. Similarly, $(\xi, \eta) \mapsto (x, y)$ is diffeomorphic near $Y^{-1}(p')$. So $(u, v) \mapsto (\xi, \eta)$ is diffeomorphic near $X^{-1}(p')$. We have shown that $Y^{-1} \circ X : U_1 \to V_1$ is a local diffeomorphism. Together with the fact $Y^{-1} \circ X$ is bijective, we actually see $Y^{-1} \circ X$ is a diffeomorphism.

4