Suggested Solution of Midterm of Differential Geometry

(1)(a)

Proof. We denote the unit tangent, principal normal and binormal of *α* by *T, N, B* respectively. Then we have

$$
\alpha' = |\alpha'|T
$$

\n
$$
\alpha'' = |\alpha'|T + |\alpha'|T'
$$

\n
$$
= |\alpha'|T + |\alpha'|^2 kN
$$

by Frenet Formula for non-unit speed curve. Then

$$
\alpha' \times \alpha'' = k|\alpha'|^3 T \times N = k|\alpha'|^3 B.
$$

Thus, we have

$$
k = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3}.
$$

 $\overline{2}$

(b)

$$
\alpha(t) = (t, \frac{1+t}{t}, \frac{1-t^2}{t})
$$

\n
$$
\alpha' = (1, \frac{-1}{t^2}, -\frac{1}{t^2} - 1), |\alpha'| = \sqrt{2}\sqrt{1 + \frac{1}{t^2} + \frac{1}{t^4}}
$$

\n
$$
\alpha'' = 2(0, \frac{1}{t^3}, \frac{1}{t^3})
$$

\n
$$
\alpha' \times \alpha'' = \frac{1}{t^3}(1, -1, 1), |\alpha' \times \alpha''| = 2\sqrt{3}\frac{1}{|t|^3}
$$

\n
$$
k = \frac{|\alpha' \times \alpha''|}{|\alpha'|^3} = \frac{\sqrt{6}}{2} \frac{1}{(t^2 + 1 + \frac{1}{t^2})^{\frac{3}{2}}}.
$$

(2)

Proof. Let *C* be the circle such that *AB* is a chord of it and *AB* divide *C* into α and β where α has length *l* (we also denote the length of β by *l'*). Such a circle exists because $l > AB$. If *r* is the radius and θ is the angle subtended by AB , then $r\theta = l$ and $r \sin(\theta/2) = \frac{1}{2}AB$. The area of the circle is πr^2 . Note that $l + l' = 2\pi r$.

Consider any curve *γ* with length *l* joining *A, B* such that *{γ, AB}* forms a Jordan curve. Then we consider the closed curve $\{\gamma, \beta\}$ with fixed length $l + l'$, and let γ vary, β be fixed. By a general isoperimetric inequality, let $4\pi^2 r^2 = (l + l')^2 \ge 4\pi \mathcal{A}$ where \mathcal{A} is the area bounded by the curve $\{\gamma, \beta\}$. Therefore the largest possible area is πr^2 . Hecne if $\{\gamma, \beta\}$ bounds the largest area, we must have $(l + l')^2 \geq 4\pi\mathcal{A}$ and *{γ, β}* must be a circle.

(3)(a)

Proof. Fix s_0 , and let *A* be a constant orthogonal matrix and \mathbf{v}_0 be a constant vector such that:

$$
\begin{pmatrix} T_{\alpha}(s_0) \\ N_{\alpha}(s_0) \\ B_{\alpha}(s_0) \end{pmatrix} = A \begin{pmatrix} T_{\beta}(s_0) \\ N_{\beta}(s_0) \\ B_{\beta}(s_0) \end{pmatrix}
$$

and $\alpha(s_0) = A\beta(s_0) + \mathbf{v}_0$. Let $\gamma(s) = A\beta(s) + \mathbf{v}_0$. Then one can check that the curvature and torsion of γ are still *k* and τ respectively. By the Frenet formula, the T_{γ} , N_{γ} , B_{γ} and T_{α} , N_{α} , B_{a} satisfy the same ODE and they are equal at $s = s_0$. Hence they are equal for all *s*. In particular, $\alpha'(s) = \gamma'(s)$. Since $\alpha(s_0) = \gamma(s_0)$, we have $\alpha(s) =$ $A\beta(s) + \mathbf{v}_0$.

 \Box

(3)(b)

Proof. Let $R = aT + bN + cB$, then by the assumption

$$
\left\{ \begin{array}{l} T' = R \times T \\ N' = R \times N \\ B' = R \times B \end{array} \right.
$$

we have

$$
\begin{cases}\n bN \times T + cB \times T = T' = kN \\
aT \times N + cB \times N = N' = -kT + \tau B \\
aT \times B + bN \times B = B' = -\tau N\n\end{cases}
$$

One may apply inner product with *N, T* to the above equations, then we have $c = k, b = 0, a = \tau$. Therefore, $R = \tau T + kB$.

(4)(a) In the coordinate parametrization

$$
X(u, v) = \left(\frac{4u}{A}, \frac{4v}{A}, \frac{2(u^2 + v^2)}{A}\right),
$$

we have

$$
X_u = \left(\frac{4(v^2 - u^2 + 4)}{A^2}, \frac{-8uv}{A^2}, \frac{16u}{A^2}\right)
$$

\n
$$
X_v = \left(\frac{-8uv}{A^2}, \frac{4(u^2 - v^2 + 4)}{A^2}, \frac{16v}{A^2}\right)
$$

\n
$$
E = \frac{16}{(u^2 + v^2 + 4)^2}, F = 0, G = \frac{16}{(u^2 + v^2 + 4)^2}.
$$

And

$$
Area(\mathbb{S}^2) = \int_{\mathbb{R}^2} \sqrt{EG - F^2} du dv
$$

=
$$
\int_{\mathbb{R}^2} \frac{16}{(u^2 + v^2 + 4)^2} du dv
$$

=
$$
\int_{0}^{\infty} \int_{0}^{2\pi} \frac{16}{(r^2 + 4)^2} r dr d\theta
$$

=
$$
2\pi \int_{0}^{\infty} \frac{16}{(r^2 + 4)^2} r dr
$$

=
$$
4\pi.
$$

(5)(a)

Proof. Let $X: U \subset \mathbb{R}^2 \to M$ be a parametrization of *p* in *M*, and write *X*(*u, v*) = (*x*(*u, v*)*, y*(*u, v*)*, z*(*u, v*)), (*u, v*) ∈ *U*. Since $X_u \times X_v \neq 0$, we have one of the Jacobian determinants

$$
\frac{\partial(x,y)}{\partial(u,v)}, \frac{\partial(y,z)}{\partial(u,v)}, \frac{\partial(z,x)}{\partial(u,v)}
$$

is not zero at $q \doteq X^{-1}(p)$.

Suppose first that $\frac{\partial(x,y)}{\partial(u,v)}(q) \neq 0$, and consider the map $\pi \circ X : U \to$ \mathbb{R}^2 where π is the projection $\pi(x, y, z) = (x, y)$. Then $\pi \circ X(u, v) =$ $(x(u, v), y(u, v))$. Then by inverse function theorem, there exist an open neighborhood of *q*, V_1 , in *U* and an open neighborhood of $\pi \circ X(q)$, *V*₂, such that $F = \pi \circ X$ maps *V*₁ diffeomorphically onto *V*₂. Now let $V = X(V_1)$, then *V* is an open neighborhood of *p* in *M*. Let $Y = X \circ F^{-1}$. Then *Y* is a coordinate parametrization near *p*. Now $Y = (x(u(x, y), v(x, y)), y(u(x, y), v(x, y)), z(u(x, y), v(x, y)) = (x, y, f(x, y)).$

$$
Y = (x(u(x, y), v(x, y)), y(u(x, y), v(x, y)), z(u(x, y), v(x, y)) = (x, y, f(x, y)))
$$

by the definition of F^{-1} .

(5)(b)

Proof. Now we have

$$
X(u, v) = (x(u, v), y(u, v), f(x(u, v), y(u, v)))
$$

\n
$$
X_u = (x_u, y_u, f_x x_u + f_y y_u)
$$

\n
$$
X_v = (x_v, y_v, f_x x_v + f_y y_v).
$$

Then (x_u, y_u) and (x_v, y_v) are linearly independent otherwise X_u and X_v are linearly dependent. By inverse function theorem, there are an open neighborhood *O* of (u_0, v_0) and an open neighborhood *V* of (x_0, y_0) such that $\pi \circ X : O \to V$ is a diffeomorphism.

 \Box

(5)(c)

Proof. Let $p \in M$, $X: U \rightarrow M$, $(u, v) \mapsto (x, y, z)$ and $Y: V \rightarrow$ $M, (\xi, \eta) \mapsto (x, y, z)$ be 2 coordinate parametrizations such that $p \in$ $X(U) \cap Y(V) = S$. Denote $U_1 = X^{-1}(S)$ and $V_1 = Y^{-1}(S)$, we want to show $Y^{-1} \circ X : U_1 \to V_1$ is a diffeomorphism. Now let $p' \in S$, by part (a) and (b)(we may assume the graph we obtain in part (a) is over *xy*plane), we have $(u, v) \mapsto (x, y)$ is diffeomorphic near $X^{-1}(p')$. Similarly, $(\xi, \eta) \mapsto (x, y)$ is diffeomorphic near $Y^{-1}(p')$. So $(u, v) \mapsto (\xi, \eta)$ is diffeomorphic near $X^{-1}(p')$. We have shown that $Y^{-1} \circ X : U_1 \to V_1$ is a local diffeomorphism. Together with the fact $Y^{-1} \circ X$ is bijective, we actually see $Y^{-1} \circ X$ is a diffeomorphism.

4