
1. Gauss map and Gaussian curvature
Let M be an orientable regular surface and let n be a unit normal

vector field. We also denote the Gauss map by n. That is n : M → S2

which is the unit sphere in R3.

Proposition 1. Let p ∈ M . Suppose K(p) ̸= 0. Let Bn be a sequence
of open sets with Bn → p in the sense that supq∈Bn

|p − q| → 0 as

n → ∞. Let An be the area of Bn and Ãn be the area of the Gauss
image n(Bn) of Bn. Then

lim
n→∞

Ãn

An

= |K(p)|.

Proof. Let X(u, v) be a coordinate paramatrization near p such that
X(0, 0) = p. Let Sp(Xu) = a11Xu+a21Xv and Sp(Xu) = a12Xu+a22Xv,
then det(aij) = K. Suppose Un in the (u, v) plane such that X(Un) =
Bn. Then

An =

∫∫
Un

|Xu ×Xv|dudv,

and

Ãn =

∫∫
Un

|nu × nv|dudv.

where n = Xu ×Xv/|Xu ×Xv| is the unit normal on M . Now

nu = dn(Xu) = −Sp(Xu) = −(a12Xu+a22Xv),nv = −(a12Xu+a22Xv).

Hence
nu × nv = det(aij)Xu ×Xv = KXu ×Xv.

So

|nu × nv|(u, v) =|K(u, v)||Xu ×Xv|(u, v)
=|K(0, 0)||Xu ×Xv|(u, v) + (|K(u, v)− |K(0, 0)|) |Xu ×Xv|(u, v).

Since Bn → p, we have Un → (0, 0). Hence for any ϵ > 0 there is N > 0
such that if n ≥ N , then ||K(u, v)− |K(0, 0)|| ≤ ϵ.

Ãn = |K(0, 0)|An +Rn

where |Rn| ≤ ϵAn, if n ≥ N . From this it is easy to see the proposition
follows. �

2. Theorema Egregium of Gauss

Definition 1. Let F : M1 → M2 be a diffeomorphism. F is said
to be an isometry if for any p ∈ M1 and q = F (p), the linear map
dF : M1 → M2 is an isometry as inner product spaces. If there is an
isometry from M1 onto M2, then M1 is said to be isometric to M2.
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Theorem 1. (Theorema Egregium of Gauss) The Guassian curvature
K is invariant under isometries. That is to say, the Gaussian curvature
depends only on the first fundamental form.

1st Proof: sketch. Let X(u, v) be a local parametrization of a regular
surface, and let E,F, G be the coefficients of the first fundamental
form and e, f , g be the second fundamental form. In the following, if
a, b, c are three vectors, (a, b, c) is the ordered triple product of the
three vectors. Now

e = ⟨n,Xuu⟩ =
(Xuu,Xu,Xv)√

EG− F 2
,

etc.

K =
eg − f 2

EG− F 2

=
[(Xuu,Xu,Xv)(Xvv,Xu,Xv)− (Xuv,Xu,Xv)

2]

(EG− F 2)2
.

Hence

(EG− F 2)2K

= det(Xuu,Xu,Xv) det(Xvv,Xu,Xv)− (det(Xuv,Xu,Xv))
2

=

∣∣∣∣∣∣
⟨Xuu,Xvv⟩ ⟨Xuu,Xu⟩ ⟨Xuu,Xv⟩
⟨Xu,Xvv⟩ ⟨Xu,Xu⟩ ⟨Xu,Xv⟩
⟨Xv,Xvv⟩ ⟨Xv,Xu⟩ ⟨Xv,Xv⟩

∣∣∣∣∣∣−
∣∣∣∣∣∣
⟨Xuv,Xuv⟩ ⟨Xuv,Xu⟩ ⟨Xuv,Xv⟩
⟨Xu,Xuv⟩ ⟨Xu,Xu⟩ ⟨Xu,Xv⟩
⟨Xv,Xuv⟩ ⟨Xv,Xu⟩ ⟨Xv,Xv⟩

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⟨Xuu,Xvv⟩ − ⟨Xuv,Xuv⟩ ⟨Xuu,Xu⟩ ⟨Xuu,Xv⟩

⟨Xu,Xvv⟩ ⟨Xu,Xu⟩ ⟨Xu,Xv⟩
⟨Xv,Xvv⟩ ⟨Xv,Xu⟩ ⟨Xv,Xv⟩

∣∣∣∣∣∣
−

∣∣∣∣∣∣
0 ⟨Xuv,Xu⟩ ⟨Xuv,Xv⟩

⟨Xu,Xuv⟩ ⟨Xu,Xu⟩ ⟨Xu,Xv⟩
⟨Xv,Xuv⟩ ⟨Xv,Xu⟩ ⟨Xv,Xv⟩

∣∣∣∣∣∣
Now
⟨Xuu,Xvv⟩ − ⟨Xuv,Xuv⟩ = ⟨Xuu,Xv⟩v − ⟨Xuuv,Xv⟩ − ⟨Xuv,Xv⟩u + ⟨Xuvu,Xv⟩

= ⟨Xuu,Xv⟩v −
1

2
Guu

= ⟨Xu,Xv⟩uv − ⟨Xu,Xvu⟩v −
1

2
Guu

= Fuv −
1

2
Evv −

1

2
Guu.

Hence we have

K =
A−B

(EG− F 2)2
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where

A =

∣∣∣∣∣∣
−1

2
Evv + Fuv − 1

2
Guu

1
2
Eu Fu − 1

2
Ev

Fv − 1
2
Gu E F

1
2
Gv F G

∣∣∣∣∣∣ ,
and

B =

∣∣∣∣∣∣
0 1

2
Ev

1
2
Gu

1
2
Ev E F

1
2
Gu F G

∣∣∣∣∣∣ .
�

2nd Proof: sketch. Let us use the following notations: X(u1, u2) is a
coordinate parametrization. Let Xi = Xui

, gij = ⟨Xi,Xj⟩, (gij) =
(gij)

−1, n = X1 ×X2/|X1 ×X2|. Let (aij) be the matrix of −dn w.r.t.
the basis {X1,X2} and bij = II(Xi,Xj) = ⟨Xij,n⟩.

Then

Xij = bijn+ Γk
ijXk

Note Γk
ij = Γk

ji. Einstein summation convention: repeated indices mean
summation.

Hence

Xijm =bij,mn+ bijnm + Γk
ij,mXk + Γk

ijXkm

=bij,mn+ bij (−amkXk) + Γk
ij,mXk + Γk

ij

(
bkmn+ Γl

kmXl

)
=
(
bij,m + Γk

ijbkm
)
n+

(
−bijakm + Γk

ij,m + Γs
ijΓ

k
sm

)
Xk

Since X112 = X121, we have(
−b11ak2 + Γk

11,2 + Γs
11Γ

k
s2

)
Xk =

(
−b12ak1 + Γk

12,1 + Γs
12Γ

k
s1

)
Xk.

So

−b11a22 + Γ2
11,2 + Γs

11Γ
2
s2 = −b12a21 + Γ2

12,1 + Γs
12Γ

2
s1.(1)

Now

(aij) = (gij)(bij).

Hence

a22 = g2ibi2 =
1

det(gij)
(−g12b12 + g11b22) ,

a21 = g2ibi1 =
1

det(gij)
(−g12b11 + g11b21) .
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So (1) becomes:

−b11
1

det(gij)
(−g12b12 + g22b22) + Γ2

11,2 + Γs
11Γ

2
s2

= −b12
1

det(gij)
(−g12b11 + g22b21) + Γ2

12,1 + Γs
12Γ

2
s1.

Hence

g11K = g11
det(bij)

det(gij)
= Γ2

11,2 − Γ2
12,1 + Γs

11Γ
2
s2 − Γs

12Γ
2
s1

and

K =
1

g11

(
Γ2
11,2 − Γ2

12,1 + Γs
11Γ

2
s2 − Γs

12Γ
2
s1

)
.

The theorem follows from the following lemma. �

Lemma 1.

Γk
ij =

1

2

2∑
l=1

gkl (gil,j + gjl,i − gij,l) .

where gij,l =
∂
∂ul

gij etc.

Sketch of proof.

gkmΓ
k
ij =⟨Γk

ijXk,Xm⟩
=⟨Xij,Xm⟩
=gim,j − ⟨Xi,Xmj⟩
=gim,j − gikΓ

k
mj.

Hence

(2) gim,j = gkmΓ
k
ij + gikΓ

k
mj

Permuting i,m, j, we also have

(3) gij,m = gkjΓ
k
im + gikΓ

k
jm

(4) gjm,i = gkmΓ
k
ji + gjkΓ

k
mi.

(1) + (3)− (2) gives:

2gkmΓ
k
ij = gim,j + gjm,i − gij,m.

Multiple by glm and sum on m, we get the result. �
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(1) Prove that if X is an orthogonal parametrization, i.e. F = 0,
then the Gaussian curvature is given by:

K = − 1

2
√
EG

[(
Ev√
EG

)
v

+

(
Gu√
EG

)
u

]
.

Suppose in addition E = G everywhere, then

K = −e−2f∆f

where f is such that E = e2f (i.e. f = 1
2
logE), and ∆ is the

Laplacian operator:

∆ =
∂2

∂u2
+

∂2

∂v2
.

(2) (i) LetM be a regular orientable surface, such thatM is tangent
to a sphere S2(r) of radius r at p. Assume that p is at the origin
and Tp(M) is the xy-plane. Suppose also that M lies inside
S2(r) which lies in the upper half space {z ≥ 0}. Prove that
the Gaussian curvature of M at p is at least 1/r2.
(ii) Prove that a compact regular orientable surface in R3

contains a point with positive Gaussian curvature.
(3) Let M be a regular orientable surface. Suppose every point of

M is umbilical, i.e., there is a smooth function λ on M such
that for any p ∈ M , Sp(v) = λ(p)v for all v ∈ Tp(M). Suppose
M is connected (i.e. any two points on M can be joined by a
continuous curve on M), then λ is constant on M .


