Gaussian curvature and mean curvature

Let *M* be a regular surface which is orientable. Let **n** be a smooth unit normal vector field on *M*.

Definition 1. Let $p \in M$ and let S_p be the shape operator.

- (i) The determinant of S_p is called the *Gaussian curvature* of M at *p* and is denoted by $K(p)$.
- (ii) $\frac{1}{2}$ tr(*S_{p*})</sub> is called the *mean curvature* of *M* at *p* and is denoted by $H(p)$.

Proposition 1. *Let M be a regular surface which is orientable. Let* **n** *be a smooth unit normal vector field on M. Let* $p \in M$ *and let* k_1 *and* k_2 *be the principal curvatures of M at p (i.e. eigenvalues of* S_p *). Then* $K(p) = k_1 k_2$ *and* $H(p) = \frac{1}{2}(k_1 + k_2)$ *.*

Gaussian curvature and mean curvature in local coordinates

Let $\mathbf{X}(u, v)$ be a coordinate parametrization of M. Let $\mathbf{n} = \mathbf{X}_u \times$ $\mathbf{X}_v / |\mathbf{X}_u \times \mathbf{X}_v|$.

Definition 2. The coefficients of the second fundamental form *e, f, g* at *p* are defined as:

$$
e = \mathbb{II}_p(\mathbf{X}_u, \mathbf{X}_u) = \langle S_p(\mathbf{X}_u), \mathbf{X}_u \rangle = -\langle d\mathbf{n}(\mathbf{X}_u), \mathbf{X}_u \rangle = \langle \mathbf{n}, \mathbf{X}_{uu} \rangle;
$$

\n
$$
f = \mathbb{II}_p(\mathbf{X}_u, \mathbf{X}_v) = \langle S_p(\mathbf{X}_u), \mathbf{X}_v \rangle = -\langle d\mathbf{n}(\mathbf{X}_u), \mathbf{X}_v \rangle = \langle \mathbf{n}, \mathbf{X}_{uv} \rangle;
$$

\n
$$
g = \mathbb{II}_p(\mathbf{X}_v, \mathbf{X}_v) = \langle S_p(\mathbf{X}_v), \mathbf{X}_v \rangle = -\langle d\mathbf{n}(\mathbf{X}_v), \mathbf{X}_v \rangle = \langle \mathbf{n}, \mathbf{X}_{vv} \rangle.
$$

Question: Why is it true that $\langle S_p(\mathbf{X}_u), \mathbf{X}_u \rangle = \langle \mathbf{n}, \mathbf{X}_{uu} \rangle$ etc? **Fact:** Note that

$$
e = \frac{\det\left(\mathbf{X}_u, \mathbf{X}_v, \mathbf{X}_{uu}\right)}{\sqrt{EG - F^2}}, f = \frac{\det\left(\mathbf{X}_u, \mathbf{X}_v, \mathbf{X}_{uu}\right)}{\sqrt{EG - F^2}}, g = \frac{\det\left(\mathbf{X}_u, \mathbf{X}_v, \mathbf{X}_{vv}\right)}{\sqrt{EG - F^2}}.
$$

Proposition 2. (1) *Let*

$$
\left(\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}\right)
$$

be the matrix of S_p *with respect to the basis* $\{X_u, X_v\}$ *. Then*

.

$$
\left(\begin{array}{cc} e & f \\ f & g \end{array}\right) = \left(\begin{array}{cc} E & F \\ F & G \end{array}\right) \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)
$$

(2) *The Gaussian curvature K*(*p*) *and the mean curvature H*(*p*) *are given by*

$$
K(p) = \frac{eg - f^2}{EG - F^2},
$$

and

$$
H(p) = \frac{1}{2} \frac{eG - 2fF + gE}{EG - F^2}.
$$

Facts:

- (i) *K* and *H* are smooth functions on *M*. *√ √*
- (ii) $k_1 = H +$ $H^2 - K$, $k_2 = H \overline{H^2 - K}$. (Note $H^2 - K =$ 1 $\frac{1}{4}(k_1 - k_2)^2$. Hence if $k_1 > k_2$, then k_1 and k_2 are also smooth.

Definition 3. Let *M* be a regular orientable surface. Let $p \in M$. *p* is said to be: (i) elliptic point if $K(p) > 0$; (ii) hyperbolic point if $K(p) < 0$; (iii) parabolic point if $K(p) = 0$ but $S_p \neq 0$; (iv) planar point if $S_p = 0$.

Proposition 3. Let M be a regular orientable surface. Let $p \in M$. *If* $K(p) > 0$ *then near p, points on M will be on one side of* $T_p(M)$ *. If* $K(p) < 0$ *, then in each neighborhood of p there exist points on both sides of* $T_p(M)$ *.*

Assignment 6, Due Friday Oct 31, 2014

(1) Find the Gaussian curvature of the Enneper's surface:

$$
\mathbf{X}(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, v^2 - u^2\right).
$$

Show that the mean curvature of the Enneper's surface is 0 everywhere. What are the principal curvatures?

(2) Consider the tractrix Let α : (0, $\frac{\pi}{2}$) $(\frac{\pi}{2}) \rightarrow xz$ -plane given by

$$
\alpha(t) = \left(\sin t, 0, \cos t + \log \tan \frac{t}{2}\right)
$$

Show that the Gaussian curvature of the surface of revolution obtained by rotating α about the *z*-axis is -1. The surface is called the pseudosphere.

.

- (3) Let *M* be a regular orientable surface with unit normal vector field **n**. Let *f* be a smooth function on *M* which is nowhere zero. Let $p \in M$ and let \mathbf{v}_1 and \mathbf{v}_2 form an orthonormal basis for $T_p(M)$.
	- (i) Prove that the Gaussian curvature of *M* at *p* is given by:

$$
K = \frac{\langle d(f\mathbf{n})(\mathbf{v}_1) \times d(f\mathbf{n})(\mathbf{v}_2), \mathbf{n} \rangle}{f^2}.
$$

Note $d(f\mathbf{n})(\mathbf{v})$ is defined as follow: let α be the curve on M with $\alpha(0) = p$, $\alpha'(0) = \mathbf{v}$, then

$$
d(f\mathbf{n})(\mathbf{v}) = \frac{d}{dt}(f(\alpha(t))\mathbf{n}(\alpha(t)))|_{t=0}.
$$

2

(ii) Let *M* be the ellipsoid

$$
h(x, y, z) := \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.
$$

Let f be the restriction of the function

$$
\left(\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}\right)^{\frac{1}{2}}.
$$

Apply (i) to show that the Gaussian curvature is given by

$$
K = \frac{1}{f^4 a^2 b^2 c^2}.
$$

(Hint: We may take $\mathbf{n} = \frac{\nabla h}{\nabla h}$ $\frac{\nabla h}{|\nabla h|}$. Note that $|\nabla h| = 2f$ and so $d(f\mathbf{n})(\mathbf{v}) = \left(\frac{v_1}{a^2}\right)$ $\frac{v_1}{a^2}$, $\frac{v_2}{v^2}$ $\frac{v_2}{v^2}$, $\frac{v_3}{c^2}$ $\frac{v_3}{c^2}$) if **v** = (*v*₁*, v*₂*, v*₃).)