The second fundamental form and curvatures of curves

Let *M* be a regular surface which is orientable. Let **n** be a smooth unit normal vector field on *M*. (Note: There are two choices of unit normal vector fields on an orientable surface). Let $\alpha(s)$ be a smooth curve on *M*. Let $T = \alpha'$ and let $\tilde{N}(s)$ be the unit vector at $\alpha(s)$ such that $N(s) \in T_{\alpha(s)}(M)$ and such that $\{T, N, n\}$ is positively oriented, i.e. $\tilde{N} = \mathbf{n} \times T$.

Lemma 1. *T'* is a linear combination of \tilde{N} and **n**. Hence $T' = k_g \tilde{N} +$ k_n **n** *for some smooth functions* k_n *and* k_g *on* $\alpha(s)$ *.*

Definition 1. As in the lemma, $k_n(s)$ is called the *normal curvature* of α at $\alpha(s)$ and $k_q(s)$ is called the *geodesic curvature* of α at $\alpha(s)$.

Facts:

- (i) k_n and k_q depend on the choice of **n**.
- (ii) We will see later that k_g is intrinsic: it depends only on the first fundamental form *and* the orientation of the surface.
- (iii) Let *k* be the curvature of α' . Suppose *k* is not zero. Let *N* be the normal of α . Then $k_n = k \langle N, n \rangle = k \cos \theta$ where θ is the angle between *N* and **n**. If $k = 0$, then $T' = 0$ and $k_n = k_g = 0$.

For the time being we only discuss normal curvature. The geometric meaning of the second fundamental form is the following:

Proposition 1. *Let M be an orientable regular surface and* **n** *be a smooth unit normal vector field on M. Let* II *be the second fundamental form of M (w.r.t.* **n**) and let $p \in M$ *. Suppose* $\mathbf{v} \in T_p(M)$ *with unit length and suppose* $\alpha(s)$ *is a smooth curve of M parametrized by arclength with* $\alpha(0) = p$ *and* $\alpha'(0) = \mathbf{v}$ *. Then*

$$
k_n(0) = \mathbb{II}_p(\mathbf{v}, \mathbf{v})
$$

where k_n *is the normal curvature of* α *at* $\alpha(0) = p$ *.*

Corollary 1. *With the same notation as in the proposition, we have the following:*

- (i) *Let α and β be two regular curves parametrized by arc length passing through p. Suppose α and β are tangent at p. Then the normal curvatures of* α *and* β *at* p *are equal.*
- (ii) Let k_1 and k_2 be the eigenvalues of \mathbb{II}_p with $k_1 \leq k_2$. Then all *normal curvatures are between* k_1 *and* k_2 *.*

Definition 2. *k*¹ and *k*² in the corollary are called *principal curvatures* of *M* at *p*. Let e_1 and e_2 be eigenvectors of k_1 and k_2 . The directions determined by *e*¹ and *e*² are called *principal directions*.

More definitions:

Definition 3. 1. *Line of curvature*: A regular curve α on S such that α' is an eigenvector of the 2nd fundamental form.

2. *Asymptotic direction and asymptotic curve*: The direction where the normal curvature is zero is called an asymptotic direction. A regular curve α on S such that α' is in the asymptotic direction is called an asymptotic curve.

3. *Conjugate directions*: Two **v***,* $\mathbf{w} \in T_p(S)$ are conjugate if they are not zero vectors and $\mathbb{II}_p(\mathbf{v}, \mathbf{w}) = 0$. The directions parallel to **v** and **w** are said to be conjugate directions.

More on bilinear forms

Let *V* be a two dimensional inner product space with inner product *⟨ · ⟩*. Let *B* be a symmetric bilinear form on *V* and let *A* be the corresponding self adjoint linear operator on V . Let k_1 and k_2 be the eigenvalues of *A*.

Proposition 2. (i) $\det A = k_1 k_2$ *and* $\text{tr}(A) = k_1 + k_2$.

(ii) Let \mathbf{v}_1 , \mathbf{v}_2 form a basis for V (not necessarily orthonormal). Let $b_{ij} = B(\mathbf{v}_i, \mathbf{v}_j)$ and let $g_{ij} = \langle \mathbf{v}_i, \mathbf{v}_j \rangle$. Then $\det(A) = \frac{\det(b_{ij})}{\det(g_{ij})}$ $and \text{ tr}(A) = \frac{b_{11}g_{22}-2b_{12}g_{12}+b_{22}g_{11}}{\det(g_{ij})}.$

Assignment 5, Due Friday Oct 24, 2014

- (1) Let $M = \{(x, y, z) | z = x^2 + ky^2\}$, with $k > 0$. Show that $e_1 = (1, 0, 0)$ and $e_2 = (0, 1, 0)$ form a basis of $T_p(M)$ where $p = (0, 0, 0)$. Let **n** be the unit normal of *M* pointing upward, i.e. $\langle \mathbf{n}, e_3 \rangle > 0$ where $e_3 = (0, 0, 1)$. Find the matrix of $d\mathbf{n}_p$: $T_p(M) \to T_p(M)$ with respect to the basis e_1, e_2 . Find the principal curvatures of *M* at *p*.
- (2) (Euler formula) Let *M* be an orientable regular surface with a unit normal vector field **n**. Let $p \in M$ and let k_1, k_2 be the principal curvatures with eigenvectors e_1 and e_2 which are orthonormal. Let $\mathbf{v} \in T_p(M)$ such that $\mathbf{v} = \cos \theta e_1 + \sin \theta e_2$. Prove that the normal curvature of the curve α passing through *p* with tangent vector *v* is given by

$$
k_n = k_1 \cos^2 \theta + k_2 \sin^2 \theta.
$$

(3) The total torsion of a regular curve $\alpha : [0, l] \to \mathbb{R}^3$, which has nonzero curvature and is parametrized by arc length, is given by $\int_0^l \tau ds$, where τ is the torsion of α . Show that a smooth closed curved with nowhere zero curvature on a sphere of radius *R* has zero total torsion.