The second fundamental form and curvatures of curves

Let M be a regular surface which is orientable. Let \mathbf{n} be a smooth unit normal vector field on M. (Note: There are two choices of unit normal vector fields on an orientable surface). Let $\alpha(s)$ be a smooth curve on M. Let $T = \alpha'$ and let $\tilde{N}(s)$ be the unit vector at $\alpha(s)$ such that $\tilde{N}(s) \in T_{\alpha(s)}(M)$ and such that $\{T, \tilde{N}, \mathbf{n}\}$ is positively oriented, i.e. $\tilde{N} = \mathbf{n} \times T$.

Lemma 1. T' is a linear combination of \tilde{N} and **n**. Hence $T' = k_g \tilde{N} + k_n \mathbf{n}$ for some smooth functions k_n and k_q on $\alpha(s)$.

Definition 1. As in the lemma, $k_n(s)$ is called the *normal curvature* of α at $\alpha(s)$ and $k_q(s)$ is called the *geodesic curvature* of α at $\alpha(s)$.

Facts:

- (i) k_n and k_g depend on the choice of **n**.
- (ii) We will see later that k_g is intrinsic: it depends only on the first fundamental form *and* the orientation of the surface.
- (iii) Let k be the curvature of α' . Suppose k is not zero. Let N be the normal of α . Then $k_n = k \langle N, \mathbf{n} \rangle = k \cos \theta$ where θ is the angle between N and **n**. If k = 0, then T' = 0 and $k_n = k_g = 0$.

For the time being we only discuss normal curvature. The geometric meaning of the second fundamental form is the following:

Proposition 1. Let M be an orientable regular surface and \mathbf{n} be a smooth unit normal vector field on M. Let \mathbb{II} be the second fundamental form of M (w.r.t. \mathbf{n}) and let $p \in M$. Suppose $\mathbf{v} \in T_p(M)$ with unit length and suppose $\alpha(s)$ is a smooth curve of M parametrized by arclength with $\alpha(0) = p$ and $\alpha'(0) = \mathbf{v}$. Then

$$k_n(0) = \mathbb{II}_p(\mathbf{v}, \mathbf{v})$$

where k_n is the normal curvature of α at $\alpha(0) = p$.

Corollary 1. With the same notation as in the proposition, we have the following:

- (i) Let α and β be two regular curves parametrized by arc length passing through p. Suppose α and β are tangent at p. Then the normal curvatures of α and β at p are equal.
- (ii) Let k_1 and k_2 be the eigenvalues of \mathbb{II}_p with $k_1 \leq k_2$. Then all normal curvatures are between k_1 and k_2 .

Definition 2. k_1 and k_2 in the corollary are called *principal curvatures* of M at p. Let e_1 and e_2 be eigenvectors of k_1 and k_2 . The directions determined by e_1 and e_2 are called *principal directions*.

More definitions:

Definition 3. 1. Line of curvature: A regular curve α on S such that α' is an eigenvector of the 2nd fundamental form.

2. Asymptotic direction and asymptotic curve: The direction where the normal curvature is zero is called an asymptotic direction. A regular curve α on S such that α' is in the asymptotic direction is called an asymptotic curve.

3. Conjugate directions: Two $\mathbf{v}, \mathbf{w} \in T_p(S)$ are conjugate if they are not zero vectors and $\mathbb{II}_p(\mathbf{v}, \mathbf{w}) = 0$. The directions parallel to \mathbf{v} and \mathbf{w} are said to be conjugate directions.

More on bilinear forms

Let V be a two dimensional inner product space with inner product $\langle \cdot \rangle$. Let B be a symmetric bilinear form on V and let A be the corresponding self adjoint linear operator on V. Let k_1 and k_2 be the eigenvalues of A.

Proposition 2. (i) det $A = k_1k_2$ and $tr(A) = k_1 + k_2$.

(ii) Let \mathbf{v}_1 , \mathbf{v}_2 form a basis for V (not necessarily orthonormal). Let $b_{ij} = B(\mathbf{v}_i, \mathbf{v}_j)$ and let $g_{ij} = \langle \mathbf{v}_i, \mathbf{v}_j \rangle$. Then $\det(A) = \frac{\det(b_{ij})}{\det(g_{ij})}$ and $\operatorname{tr}(A) = \frac{b_{11}g_{22}-2b_{12}g_{12}+b_{22}g_{11}}{\det(g_{ij})}$.

Assignment 5, Due Friday Oct 24, 2014

- (1) Let $M = \{(x, y, z) | z = x^2 + ky^2\}$, with k > 0. Show that $e_1 = (1, 0, 0)$ and $e_2 = (0, 1, 0)$ form a basis of $T_p(M)$ where p = (0, 0, 0). Let **n** be the unit normal of M pointing upward, i.e. $\langle \mathbf{n}, e_3 \rangle > 0$ where $e_3 = (0, 0, 1)$. Find the matrix of $d\mathbf{n}_p$: $T_p(M) \to T_p(M)$ with respect to the basis e_1, e_2 . Find the principal curvatures of M at p.
- (2) (Euler formula) Let M be an orientable regular surface with a unit normal vector field **n**. Let $p \in M$ and let k_1, k_2 be the principal curvatures with eigenvectors e_1 and e_2 which are orthonormal. Let $\mathbf{v} \in T_p(M)$ such that $\mathbf{v} = \cos \theta e_1 + \sin \theta e_2$. Prove that the normal curvature of the curve α passing through p with tangent vector v is given by

$$k_n = k_1 \cos^2 \theta + k_2 \sin^2 \theta.$$

(3) The total torsion of a regular curve $\alpha : [0, l] \to \mathbb{R}^3$, which has nonzero curvature and is parametrized by arc length, is given by $\int_0^l \tau ds$, where τ is the torsion of α . Show that a smooth closed curved with nowhere zero curvature on a sphere of radius R has zero total torsion.