
The second fundamental form

Let M be a regular surface, which is orientable. Let n be a unit
normal vector field on M . (Note that n must be smooth). Let p ∈ M ,
and v ∈ Tp(M) and let α(t) be a smooth curve on M with α(0) = p
and α′(0) = v.

Lemma 1. With the above notation, d
dt
(n(α(t))|t=0 depends only on v

and does not depend on α.

d
dt
(n(α(t))|t=0 in the lemma will be denoted by dn(v).

Lemma 2. With notation as in the previous lemma, dn(v) is tangent
to M . Moreover, if v,w ∈ Tp(M), then ⟨dn(v),w⟩ = ⟨v, dn(w)⟩.
Hence the map Sp(v) = −dn(v) is a self-adjoint linear map on Tp(M),
and IIp(v,w) = ⟨Sp(v),w)⟩ is a symmetric bilinear form on Tp(M).

Definition 1. Sp : Tp(M) → Tp(M) is called the shape operator or
Weingarten map of M at p.

Definition 2. IIp is called the second fundamental form of M at p.

Definition 3. (i) Let M be regular surface and let f : M → R be
a function. f is said to be smooth if and only if f ◦X is smooth
for all coordinate chart X : U → M .

(ii) M1, M2 be regular surfaces and let F : M1 → M2 be a map.
F is said to be smooth if and only if the following is true: For
any p ∈ M1 and any coordinate charts X of p, Y of q = F (p),
Y−1 ◦ F ◦X is smooth whenever it is defined.

Let F : M1 → M2 be a smooth map. Let p ∈ M and q = F (p). For
any v ∈ Tp(M1), let α(t) be a smooth curve on M1 with α(0) = p and
α′(o) = v. Define dFp(v) =

d
dt
F (α(t))|t=0.

Lemma 3. dFp is well-defined and is a linear map from Tp(M1) →
Tq(M2). dFp is called the differential of F at p.

Definition 4. Let M be an orientable regular surface and let n be a
smooth unit normal vector field on M . Then the map:

n : M → S2 ⊂ R3

which assigns each point p ∈ M to the unit normal n(p) at p is called
the Gauss map of M .

Question: Is there only one Gauss map for M?

Facts: (i) n is a smooth map from M to S2; (ii) if p ∈ M and
q = n(p), then Tp(M) and Tq(S2) are the same vector subspaces of R3.
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(iii) The differential of n is the negative of the shape operator if we
identify Tp(M) with Tq(S2), where q = n(p).

A fact on symmetric bilinear form

Theorem 1. Let (V, ⟨ ⟩) be a finite dimensional inner product space of
dimension n and let B be a symmetric bilinear form. Then there is
an orthonormal basis v1, . . . ,vn such that B is diagonalized. Namely,
B(vi,vj) = λiδij.

Proof. We just prove the case that n = 2. Let S be the set in V with
||v||2 = ⟨v,v⟩ = 1. Then B(v,v) attains maximum on S at some v.
Let v1 ∈ S be such that

B(v1,v1) = max
v∈S

B(v,v).

Let v2 ∈ S such that v1 ⊥ v2. It is sufficient to prove that B(v1,v2) =
0. Let t ∈ R and let

f(t) =
B(v1 + tv2,v1 + tv2)

||v1 + tv2||2
.

Then f ′(0) = 0. Hence

0 =2B(v1,v2)− 2B(v1,v1)⟨v1,v2⟩
=2B(v1,v2).

�
Note that if A is the self-adjoint linear map such that B(v,w) =

⟨Av,w⟩. Then the vi in the theorem are eigenvectors of A with eigen-
values λi.


