The second fundamental form

Let *M* be a regular surface, which is **orientable**. Let **n** be a unit normal vector field on *M*. (Note that **n** must be smooth). Let $p \in M$, and $\mathbf{v} \in T_p(M)$ and let $\alpha(t)$ be a smooth curve on M with $\alpha(0) = p$ and $\alpha'(0) = \mathbf{v}$.

Lemma 1. With the above notation, $\frac{d}{dt}(\mathbf{n}(\alpha(t))|_{t=0}$ depends only on **v** *and does not depend on α.*

 $\frac{d}{dt}(\mathbf{n}(\alpha(t))|_{t=0}$ in the lemma will be denoted by $d\mathbf{n}(\mathbf{v})$.

Lemma 2. *With notation as in the previous lemma, d***n**(**v**) *is tangent* to M. Moreover, if $\mathbf{v}, \mathbf{w} \in T_p(M)$, then $\langle d\mathbf{n}(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, d\mathbf{n}(\mathbf{w}) \rangle$. *Hence the map* $S_p(\mathbf{v}) = -d\mathbf{n}(\mathbf{v})$ *is a self-adjoint linear map on* $T_p(M)$ *, and* $\mathbb{II}_p(\mathbf{v}, \mathbf{w}) = \langle S_p(\mathbf{v}), \mathbf{w} \rangle$ *is a symmetric bilinear form on* $T_p(M)$ *.*

Definition 1. $S_p: T_p(M) \to T_p(M)$ is called the *shape operator or Weingarten map* of *M* at *p.*

Definition 2. II_p is called the *second fundamental form* of *M* at *p*.

- **Definition 3.** (i) Let *M* be regular surface and let $f : M \to \mathbb{R}$ be a function. *f* is said to be smooth if and only if *f ◦***X** is smooth for all coordinate chart $\mathbf{X}: U \to M$.
	- (ii) M_1 , M_2 be regular surfaces and let $F : M_1 \to M_2$ be a map. *F* is said to be smooth if and only if the following is true: For any $p \in M_1$ and any coordinate charts **X** of p , **Y** of $q = F(p)$, **Y**^{$−1$} \circ *F* \circ **X** is smooth whenever it is defined.

Let $F: M_1 \to M_2$ be a smooth map. Let $p \in M$ and $q = F(p)$. For any $\mathbf{v} \in T_p(M_1)$, let $\alpha(t)$ be a smooth curve on M_1 with $\alpha(0) = p$ and $\alpha'(o) = \mathbf{v}$. Define $dF_p(\mathbf{v}) = \frac{d}{dt}F(\alpha(t))|_{t=0}$.

Lemma 3. dF_p *is well-defined and is a linear map from* $T_p(M_1) \rightarrow$ $T_q(M_2)$ *. dF_p is called the differential of F at p.*

Definition 4. Let *M* be an orientable regular surface and let **n** be a smooth unit normal vector field on *M*. Then the map:

$$
\mathbf{n}:M\to\mathbb{S}^2\subset\mathbb{R}^3
$$

which assigns each point $p \in M$ to the unit normal $\mathbf{n}(p)$ at p is called the Gauss map of *M*.

Question: Is there only one Gauss map for *M*?

Facts: (i) **n** is a smooth map from *M* to \mathbb{S}^2 ; (ii) if $p \in M$ and $q = \mathbf{n}(p)$, then $T_p(M)$ and $T_q(\mathbb{S}^2)$ are the same vector subspaces of \mathbb{R}^3 . (iii) The differential of **n** is the negative of the shape operator if we identify $T_p(M)$ with $T_q(\mathbb{S}^2)$, where $q = \mathbf{n}(p)$.

A fact on symmetric bilinear form

Theorem 1. Let $(V, \langle \rangle)$ be a finite dimensional inner product space of *dimension n and let B be a symmetric bilinear form. Then there is* an orthonormal basis $\mathbf{v}_1, \ldots, \mathbf{v}_n$ such that B is diagonalized. Namely, $B(\mathbf{v}_i, \mathbf{v}_j) = \lambda_i \delta_{ij}.$

Proof. We just prove the case that $n = 2$. Let *S* be the set in *V* with $||\mathbf{v}||^2 = \langle \mathbf{v}, \mathbf{v} \rangle = 1$. Then $B(\mathbf{v}, \mathbf{v})$ attains maximum on *S* at some **v**. Let $\mathbf{v}_1 \in S$ be such that

$$
B(\mathbf{v}_1, \mathbf{v}_1) = \max_{\mathbf{v} \in S} B(\mathbf{v}, \mathbf{v}).
$$

Let $\mathbf{v}_2 \in S$ such that $\mathbf{v}_1 \perp \mathbf{v}_2$. It is sufficient to prove that $B(\mathbf{v}_1, \mathbf{v}_2) =$ 0. Let $t \in \mathbb{R}$ and let

$$
f(t) = \frac{B(\mathbf{v}_1 + t\mathbf{v}_2, \mathbf{v}_1 + t\mathbf{v}_2)}{||\mathbf{v}_1 + t\mathbf{v}_2||^2}.
$$

Then $f'(0) = 0$. Hence

$$
0 = 2B(\mathbf{v}_1, \mathbf{v}_2) - 2B(\mathbf{v}_1, \mathbf{v}_1)\langle \mathbf{v}_1, \mathbf{v}_2 \rangle
$$

=2B(\mathbf{v}_1, \mathbf{v}_2).

Note that if *A* is the self-adjoint linear map such that $B(\mathbf{v}, \mathbf{w}) =$ $\langle A\mathbf{v}, \mathbf{w} \rangle$. Then the \mathbf{v}_i in the theorem are eigenvectors of *A* with eigenvalues λ_i .

 \Box