**Reminder: Midterm exam will be on Oct 8, Wednesday
10:30am—12:15pm**

A proof on change of coordinates

Proposition 1. (Change of coordinates) Let M be a regqular surface
and let X : U — M, Y : V — M be two coordinate parametrizations.
Let S=X({U)NY(V) C M and let Uy = X71(S) and V; = Y1(9).
Then Y 1o X : U, — Vi is a diffeomorphism.

Proof. (Sketch) Let p € S. Then there is an open set S; C S such
that S is given by the graph {(z,y, 2)|(z,y) € O,z = f(z,y)}. Now
if (u,v) € Uy with X(u,v) € S, then

X(uv U) = (x(u7 U)v y(“? U), f('r<u7 U)7 y(ua U))
because z = f(x,y). Then

Xu = (xmyua fmxu + fyyu)a Xv = (mmym f:pmv + fyyv)-

Since X, and X, are linearly independent, we have (z,y.), (Zy, Ys)
are linearly independent (why?). This implies (u,v) — (z,y) is diffeo-
morphic near X~ !(p). Similarly, if (£,7) € V4, then (§,7) — (z,y) is
diffeomorphic near Y ~!(p). Hence (£,7) — (u,v) is diffeomorphic.

U

Regular parametrized surface

Definition 1. Let U be an open set of R? = {(u,v)} and let X : U —
R? be a smooth map. Suppose X,, and X,, are linearly independent at
every point in U. Then X(U) is called a regular parametrized surface.

A regular parametrized surface locally is a regular surface.
Surfaces of revolution
Let a(v) = (f(v),0,9(v)) be a regular curve of the xz-plane. The
surface by rotating a around the z-axis is given by

X(u,v) = (f(v) cosu, f(v)sinu, g(v)).

Then X, = (—f(v) sinw, f(v) cosu,0), X, = (f'(v) cosu, f'(v) sinu, g'(v)).
Note that (X, X,) = 0. They are linearly independent if f(v) # 0.
Ruled surfaces

Proposition 2. Let X : U — R3 be a reqular parametrized surface.
For any p = (up,vo) € U, there is a neighborhood V' of p such that
X(V) is a regular surface.

Ruled surfaces are in general regular parametrized surfaces. They

are defined as follows.
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Let a(t) and w(t), t € I be two curves. Then
(1) X(t,v) = a(t) + vw(t)

t € I, v € Ris called a ruled surface. In this case, we say that the
ruled surface is generated by {a, w}. X; =o' +ow’, X, = w.
Here are some terms:

Directriz: «(t).
Rulings: L; = {t = constant}, is the straight line v — a(t) + vw(t),
veR.

The Mobius strip

X(#,v) = (cosb,sinf,0)+v(sin %9 cos 6, sin %9 sin 6, cos %9) = a(0)+vw(0)

1

—r<f<m —3<v<i Whenf=m w(d) = (-1,00). When
0 = —m, then w(0) = (1,0,0) Now
(

Xy =
Xy = (—sinf, cosb,0) + vw'(6)

Tangent space of a regular surface
Let M be a regular surface and let p € M. Let X : U — M be a co-
ordinate chart containing p with X(ug, vo) = p. Then the tangent space
T,(M) of M at p is the vector space spanned by X, (uo, vo), X, (uo, Vo).
Note that dim(7,(M)) = 2.

Proposition 3. (i) T,(M) is well defined. Namely, the definition
of T,(M) does not depend on the coordinate chart containing p.

(ii) v € T,(M) if any only if there is a smooth curve ac on M with
a(0) =p and o/(0) = .

Lemma 1. Let X : U -V C M be a coordinate parametrization of a
reqular surface M. Let f(t) = (u(t),v(t),t € I be a smooth curve in U,
then a(t) = X(u(t),v(t)) is a smooth curve in M. Conversely, suppose
a(t) is smooth curve in M with oo C V', then there is a unique smooth
curve B(t) in U such that a(t) = X(B(t)).

First fundamental form
Let M be a regular surface. The first fundamental form g of M is
an inner product at each T,(M) given by g(v,w) = (v, w).
Let X : U — V C M be a coordinate parametrization. The coeffi-
cients of the first fundamental form ¢ are defined as:

sin —0 cos 6, sin — Hsmﬁ Ccos — 0)

E = g(XmXu) - <Xu7Xu>7F = g(XuaXv) - <Xu>Xv>>G - g(XwXu) =

(X0, Xo)-
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9X " then we also

If we use (u',u?) instead of (u,v) and let X; = &2

denote coefficients of the first fundamental form g as
9ij = (X4, X;).

Suppose a(t) = (x(t),y(t), z(t)) is a smooth curve on M, a <t <b
such that a(t) = X((u(t),v(t)) in local coordinates. Then the length
of «v is given by

b
l:/ || (t)dt
dud_v dv

= [Pl + 2P0 %D ¢ o)

b
:/ VE@W)? + 2Fu'v' + G(v')2dt.

So sometimes, the first fundamental form is written symbolically as
Edu? + 2Fdudv + Gdv?.
Bilinear form and quadratic form
Let V be a vector space over R. A map B : V xV — R is said to
be a bilinear form if

B(ajui+asuy, v) = ayB(uy, v)4asB(uy, v); B(u,byvi+byvy) = by B(u, vq)+byB(u, va).

B is said to be symmetric if B(u,v) = B(v,u). If B is a symmet-
ric bilinear form, then @Q(u) = B(u,u) is called the quadratic form
associated with B.

Proposition 4. (i) Let B be a symmetric bilinear form on V and
Q 1is the associated quadratic form. Then

B(u,v) = 5 [Qu+v) — Qw) — Q).

(ii) Let B be a bilinear symmetric form on a finite dimensional
inner product space V with dimension n and Q) is the as-
sociated quadratic form. Then there is an orthonormal basis
{er,....en} such that B(e;,e;) = Ndij and QX i, aie;) =
Sor o hai. A are called the eigenvalues of B (or Q).

(iii) Let B, V and Q as in (ii) and let (;) denote the inner product
on V. The the mapping A :V — V with Au defined by

(Au,v) = B(u, V)

for all v is a self-adjoint linear transformation. Conversely,
every self-adjoint linear transformation A induces a symmetric
bilinear form B by the above relation. Moreover, the \; in (ii)
are the eigenvalues of A.



Assignment 4, Due Friday Oct 3, 2014

(1) Find the equation of the tangent space:

(i) at a point (a, b, ¢) on the regular surface M = {(z,y, z) €
R3|f(z,y,2) = 0}, assuming 0 is a regular value of f;

(ii) at the point (a,b,0) on the surface 2 + y* — 2% = 1.

Find a unit normal in (i) and (ii).

(2) Find the coefficients F, F, G of first fundamental forms of the
following surfaces:

(i) X(u,v) = (asinucosv,bsinusinv, ccosu), a, b, c > 0; (el-
lipsoid)
(ii) the unit sphere under the stereographic projection:
4 4 2(u? + 02
z(u,v) = Zu,y(u,v) = Zv,z(u,v) = %,
where A = u? + v? + 4.

(3) Let X(u,v) be a coordinate parametrization of a regular surface.
Prove that |X, x X,| = VEG — F2.

(4) Let C be a simple (i.e. no self intersection) regular curve in
xz-plane with length [ and is given by a(s) = (z(s),0, 2(s))
with 0 < s < [ is the arc length. Assume z(s) > 0 for all s.
Show that the area of the surface M of revolution by rotating
C about the z axis is given by

Area(M) = 2n /0 | 2(s)ds.



