
**Reminder: Midterm exam will be on Oct 8, Wednesday
10:30am–12:15pm**

A proof on change of coordinates

Proposition 1. (Change of coordinates) Let M be a regular surface
and let X : U → M , Y : V → M be two coordinate parametrizations.
Let S = X(U) ∩Y(V ) ⊂ M and let U1 = X−1(S) and V1 = Y−1(S).
Then Y−1 ◦X : U1 → V1 is a diffeomorphism.

Proof. (Sketch) Let p ∈ S. Then there is an open set S1 ⊂ S such
that S1 is given by the graph {(x, y, z)|(x, y) ∈ O, z = f(x, y)}. Now
if (u, v) ∈ U1 with X(u, v) ∈ S1, then

X(u, v) = (x(u, v), y(u, v), f(x(u, v), y(u, v))

because z = f(x, y). Then

Xu = (xu, yu, fxxu + fyyu),Xv = (xv, yv, fxxv + fyyv).

Since Xu and Xv are linearly independent, we have (xu, yu), (xv, yv)
are linearly independent (why?). This implies (u, v) → (x, y) is diffeo-
morphic near X−1(p). Similarly, if (ξ, η) ∈ V1, then (ξ, η) → (x, y) is
diffeomorphic near Y−1(p). Hence (ξ, η) → (u, v) is diffeomorphic.

�
Regular parametrized surface

Definition 1. Let U be an open set of R2 = {(u, v)} and let X : U →
R3 be a smooth map. Suppose Xu and Xv are linearly independent at
every point in U . Then X(U) is called a regular parametrized surface.

A regular parametrized surface locally is a regular surface.
Surfaces of revolution

Let α(v) = (f(v), 0, g(v)) be a regular curve of the xz-plane. The
surface by rotating α around the z-axis is given by

X(u, v) = (f(v) cos u, f(v) sin u, g(v)).

ThenXu = (−f(v) sin u, f(v) cos u, 0),Xv = (f ′(v) cos u, f ′(v) sin u, g′(v)).
Note that ⟨Xu,Xv⟩ = 0. They are linearly independent if f(v) ̸= 0.

Ruled surfaces

Proposition 2. Let X : U → R3 be a regular parametrized surface.
For any p = (u0, v0) ∈ U , there is a neighborhood V of p such that
X(V ) is a regular surface.

Ruled surfaces are in general regular parametrized surfaces. They
are defined as follows.
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Let α(t) and w(t), t ∈ I be two curves. Then

(1) X(t, v) = α(t) + vw(t)

t ∈ I, v ∈ R is called a ruled surface. In this case, we say that the
ruled surface is generated by {α,w}. Xt = α′ + vw′,Xv = w.

Here are some terms:

Directrix: α(t).
Rulings: Lt = {t = constant}, is the straight line v → α(t) + vw(t),

v ∈ R.
The Möbius strip

X(θ, v) = (cos θ, sin θ, 0)+v(sin
1

2
θ cos θ, sin

1

2
θ sin θ, cos

1

2
θ) = α(θ)+vw(θ)

−π < θ < π, −1
2
< v < 1

2
. When θ = π, w(θ) = (−1, 0, 0). When

θ = −π, then w(θ) = (1, 0, 0). Now

Xv = (sin
1

2
θ cos θ, sin

1

2
θ sin θ, cos

1

2
θ)

Xθ = (− sin θ, cos θ, 0) + vw′(θ)

Tangent space of a regular surface
Let M be a regular surface and let p ∈ M . Let X : U → M be a co-

ordinate chart containing p with X(u0, v0) = p. Then the tangent space
Tp(M) of M at p is the vector space spanned by Xu(u0, v0),Xv(u0, v0).
Note that dim(Tp(M)) = 2.

Proposition 3. (i) Tp(M) is well defined. Namely, the definition
of Tp(M) does not depend on the coordinate chart containing p.

(ii) v⃗ ∈ Tp(M) if any only if there is a smooth curve α on M with
α(0) = p and α′(0) = v⃗.

Lemma 1. Let X : U → V ⊂ M be a coordinate parametrization of a
regular surface M . Let β(t) = (u(t), v(t), t ∈ I be a smooth curve in U ,
then α(t) = X(u(t), v(t)) is a smooth curve in M . Conversely, suppose
α(t) is smooth curve in M with α ⊂ V , then there is a unique smooth
curve β(t) in U such that α(t) = X(β(t)).

First fundamental form
Let M be a regular surface. The first fundamental form g of M is

an inner product at each Tp(M) given by g(v,w) = ⟨v,w⟩.
Let X : U → V ⊂ M be a coordinate parametrization. The coeffi-

cients of the first fundamental form g are defined as:

E = g(Xu,Xu) = ⟨Xu,Xu⟩, F = g(Xu,Xv) = ⟨Xu,Xv⟩, G = g(Xu,Xu) = ⟨Xv,Xv⟩.
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If we use (u1, u2) instead of (u, v) and let Xi = ∂X
∂ui , then we also

denote coefficients of the first fundamental form g as

gij = ⟨Xi,Xj⟩.
Suppose α(t) = (x(t), y(t), z(t)) is a smooth curve on M , a ≤ t ≤ b

such that α(t) = X((u(t), v(t)) in local coordinates. Then the length
of α is given by

l =

∫ b

a

|α′|(t)dt

=

∫ b

a

√
E(α(t))(

du

dt
)2 + 2F (α(t))

du

dt

dv

dt
+G(α(t))(

dv

dt
)2dt

=

∫ b

a

√
E(u′)2 + 2Fu′v′ +G(v′)2dt.

So sometimes, the first fundamental form is written symbolically as
Edu2 + 2Fdudv +Gdv2.

Bilinear form and quadratic form
Let V be a vector space over R. A map B : V × V → R is said to

be a bilinear form if

B(a1u1+a2u2,v) = a1B(u1,v)+a2B(u2,v); B(u, b1v1+b2v2) = b1B(u,v1)+b2B(u,v2).

B is said to be symmetric if B(u,v) = B(v,u). If B is a symmet-
ric bilinear form, then Q(u) = B(u,u) is called the quadratic form
associated with B.

Proposition 4. (i) Let B be a symmetric bilinear form on V and
Q is the associated quadratic form. Then

B(u,v) =
1

2
[Q(u+ v)−Q(u)−Q(v)] .

(ii) Let B be a bilinear symmetric form on a finite dimensional
inner product space V with dimension n and Q is the as-
sociated quadratic form. Then there is an orthonormal basis
{e1, . . . , en} such that B(ei, ej) = λiδij and Q(

∑n
i=1 aiei) =∑n

i=1 λia
2
i . λi are called the eigenvalues of B (or Q).

(iii) Let B, V and Q as in (ii) and let ⟨,̇⟩̇ denote the inner product
on V . The the mapping A : V → V with Au defined by

⟨Au,v⟩ = B(u,v)

for all v is a self-adjoint linear transformation. Conversely,
every self-adjoint linear transformation A induces a symmetric
bilinear form B by the above relation. Moreover, the λi in (ii)
are the eigenvalues of A.
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Assignment 4, Due Friday Oct 3, 2014

(1) Find the equation of the tangent space:
(i) at a point (a, b, c) on the regular surface M = {(x, y, z) ∈

R3|f(x, y, z) = 0}, assuming 0 is a regular value of f ;
(ii) at the point (a, b, 0) on the surface x2 + y2 − z2 = 1.
Find a unit normal in (i) and (ii).

(2) Find the coefficients E,F,G of first fundamental forms of the
following surfaces:
(i) X(u, v) = (a sinu cos v, b sinu sin v, c cosu), a, b, c > 0; (el-

lipsoid)
(ii) the unit sphere under the stereographic projection:

x(u, v) =
4u

A
, y(u, v) =

4v

A
, z(u, v) =

2(u2 + v2)

A
,

where A = u2 + v2 + 4.
(3) LetX(u, v) be a coordinate parametrization of a regular surface.

Prove that |Xu ×Xv| =
√
EG− F 2.

(4) Let C be a simple (i.e. no self intersection) regular curve in
xz-plane with length l and is given by α(s) = (x(s), 0, z(s))
with 0 ≤ s ≤ l is the arc length. Assume x(s) > 0 for all s.
Show that the area of the surface M of revolution by rotating
C about the z axis is given by

Area(M) = 2π

∫ l

0

x(s)ds.


