****Reminder: Midterm exam will be on Oct 8, Wednesday 10:30am–12:15pm****

A proof on change of coordinates

Proposition 1. *(Change of coordinates) Let M be a regular surface and let* $X: U \to M$, $Y: V \to M$ *be two coordinate parametrizations. Let* $S = \mathbf{X}(U) \cap \mathbf{Y}(V) \subset M$ *and let* $U_1 = \mathbf{X}^{-1}(S)$ *and* $V_1 = \mathbf{Y}^{-1}(S)$ *. Then* $\mathbf{Y}^{-1} \circ \mathbf{X} : U_1 \to V_1$ *is a diffeomorphism.*

Proof. (Sketch) Let $p \in S$. Then there is an open set $S_1 \subset S$ such that S_1 is given by the graph $\{(x, y, z) | (x, y) \in \mathcal{O}, z = f(x, y)\}.$ Now if $(u, v) ∈ U_1$ with $\mathbf{X}(u, v) ∈ S_1$, then

$$
\mathbf{X}(u, v) = (x(u, v), y(u, v), f(x(u, v), y(u, v)))
$$

because $z = f(x, y)$. Then

$$
\mathbf{X}_u = (x_u, y_u, f_x x_u + f_y y_u), \mathbf{X}_v = (x_v, y_v, f_x x_v + f_y y_v).
$$

Since \mathbf{X}_u and \mathbf{X}_v are linearly independent, we have $(x_u, y_u), (x_v, y_v)$ are linearly independent (why?). This implies $(u, v) \rightarrow (x, y)$ is diffeomorphic near $\mathbf{X}^{-1}(p)$. Similarly, if $(\xi, \eta) \in V_1$, then $(\xi, \eta) \to (x, y)$ is diffeomorphic near $\mathbf{Y}^{-1}(p)$. Hence $(\xi, \eta) \to (u, v)$ is diffeomorphic.

 \Box

Regular parametrized surface

Definition 1. Let *U* be an open set of $\mathbb{R}^2 = \{(u, v)\}\$ and let **X** : $U \rightarrow$ \mathbb{R}^3 be a smooth map. Suppose \mathbf{X}_u and \mathbf{X}_v are linearly independent at every point in *U*. Then **X**(*U*) is called a *regular parametrized surface*.

A regular parametrized surface locally is a regular surface.

Surfaces of revolution

Let $\alpha(v) = (f(v), 0, q(v))$ be a regular curve of the *xz*-plane. The surface by rotating α around the *z*-axis is given by

$$
\mathbf{X}(u,v) = (f(v)\cos u, f(v)\sin u, g(v)).
$$

Then $\mathbf{X}_u = (-f(v) \sin u, f(v) \cos u, 0), \mathbf{X}_v = (f'(v) \cos u, f'(v) \sin u, g'(v)).$ Note that $\langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0$. They are linearly independent if $f(v) \neq 0$. **Ruled surfaces**

Proposition 2. Let $X: U \to \mathbb{R}^3$ be a regular parametrized surface. *For any* $p = (u_0, v_0) \in U$, there is a neighborhood V of p such that $\mathbf{X}(V)$ *is a regular surface.*

Ruled surfaces are in general regular parametrized surfaces. They are defined as follows.

Let $\alpha(t)$ and $\mathbf{w}(t)$, $t \in I$ be two curves. Then

(1)
$$
\mathbf{X}(t,v) = \alpha(t) + v\mathbf{w}(t)
$$

 $t \in I$, $v \in \mathbb{R}$ is called a *ruled surface*. In this case, we say that the ruled surface is generated by $\{\alpha, \mathbf{w}\}\$. $\mathbf{X}_t = \alpha' + v\mathbf{w}'$, $\mathbf{X}_v = \mathbf{w}$.

Here are some terms:

Directrix: $\alpha(t)$. *Rulings*: $L_t = \{t = \text{constant}\},\$ is the straight line $v \to \alpha(t) + v\mathbf{w(t)}$, $v \in \mathbb{R}$.

The Möbius strip

 $\mathbf{X}(\theta, v) = (\cos \theta, \sin \theta, 0) + v(\sin \frac{1}{2})$ 2 θ cos θ , sin 1 2 θ sin θ , cos 1 2 θ) = $\alpha(\theta) + v$ **w** (θ) $-\pi < \theta < \pi$, $-\frac{1}{2} < v < \frac{1}{2}$. When $\theta = \pi$, $\mathbf{w}(\theta) = (-1, 0, 0)$. When $\theta = -\pi$, then **w**(θ) = (1, 0, 0). Now

$$
\mathbf{X}_{v} = (\sin\frac{1}{2}\theta\cos\theta, \sin\frac{1}{2}\theta\sin\theta, \cos\frac{1}{2}\theta)
$$

$$
\mathbf{X}_{\theta} = (-\sin\theta, \cos\theta, 0) + v\mathbf{w}'(\theta)
$$

Tangent space of a regular surface

Let *M* be a regular surface and let $p \in M$. Let $X: U \to M$ be a coordinate chart containing *p* with $\mathbf{X}(u_0, v_0) = p$. Then the *tangent space* $T_p(M)$ *of M at p* is the vector space spanned by $\mathbf{X}_u(u_0, v_0), \mathbf{X}_v(u_0, v_0)$. Note that $\dim(T_p(M)) = 2$.

Proposition 3. (i) $T_p(M)$ *is well defined. Namely, the definition* of $T_p(M)$ does not depend on the coordinate chart containing p.

(ii) $\vec{v} \in T_p(M)$ *if any only if there is a smooth curve* α *on* M *with* $\alpha(0) = p$ *and* $\alpha'(0) = \vec{v}$.

Lemma 1. *Let* $X: U \to V \subset M$ *be a coordinate parametrization of a regular surface M.* Let $\beta(t) = (u(t), v(t), t \in I$ *be a smooth curve in U, then* $\alpha(t) = \mathbf{X}(u(t), v(t))$ *is a smooth curve in M. Conversely, suppose* $\alpha(t)$ *is smooth curve in M with* $\alpha \subset V$, *then there is a unique smooth curve* $\beta(t)$ *in U such that* $\alpha(t) = \mathbf{X}(\beta(t))$ *.*

First fundamental form

Let *M* be a regular surface. The *first fundamental form g* of *M* is an inner product at each $T_p(M)$ given by $g(\mathbf{v}, \mathbf{w}) = \langle \mathbf{v}, \mathbf{w} \rangle$.

Let $X: U \to V \subset M$ be a coordinate parametrization. The coefficients of the first fundamental form *g* are defined as:

$$
E = g(\mathbf{X}_u, \mathbf{X}_u) = \langle \mathbf{X}_u, \mathbf{X}_u \rangle, F = g(\mathbf{X}_u, \mathbf{X}_v) = \langle \mathbf{X}_u, \mathbf{X}_v \rangle, G = g(\mathbf{X}_u, \mathbf{X}_u) = \langle \mathbf{X}_v, \mathbf{X}_v \rangle.
$$

2

If we use (u^1, u^2) instead of (u, v) and let $\mathbf{X}_i = \frac{\partial \mathbf{X}_i}{\partial u^i}$ $\frac{\partial \mathbf{X}}{\partial u^i}$, then we also denote coefficients of the first fundamental form *g* as

$$
g_{ij} = \langle \mathbf{X}_i, \mathbf{X}_j \rangle.
$$

Suppose $\alpha(t) = (x(t), y(t), z(t))$ is a smooth curve on *M*, $a \le t \le b$ such that $\alpha(t) = \mathbf{X}((u(t), v(t))$ in local coordinates. Then the length of α is given by

$$
l = \int_a^b |\alpha'| (t) dt
$$

=
$$
\int_a^b \sqrt{E(\alpha(t)) (\frac{du}{dt})^2 + 2F(\alpha(t)) \frac{du}{dt} \frac{dv}{dt} + G(\alpha(t)) (\frac{dv}{dt})^2} dt
$$

=
$$
\int_a^b \sqrt{E(u')^2 + 2Fu'v' + G(v')^2} dt.
$$

So sometimes, the first fundamental form is written symbolically as $Edu^2 + 2Fdudv + Gdv^2$.

Bilinear form and quadratic form

Let *V* be a vector space over R. A map $B: V \times V \to \mathbb{R}$ is said to be a bilinear form if

$$
B(a_1u_1 + a_2u_2, \mathbf{v}) = a_1B(\mathbf{u}_1, \mathbf{v}) + a_2B(\mathbf{u}_2, \mathbf{v}); \ B(\mathbf{u}, b_1\mathbf{v}_1 + b_2\mathbf{v}_2) = b_1B(\mathbf{u}, \mathbf{v}_1) + b_2B(\mathbf{u}, \mathbf{v}_2).
$$

B is said to be symmetric if $B(\mathbf{u}, \mathbf{v}) = B(\mathbf{v}, \mathbf{u})$. If *B* is a symmetric bilinear form, then $Q(\mathbf{u}) = B(\mathbf{u}, \mathbf{u})$ is called the quadratic form associated with *B*.

Proposition 4. (i) *Let B be a symmetric bilinear form on V and Q is the associated quadratic form. Then*

$$
B(\mathbf{u}, \mathbf{v}) = \frac{1}{2} [Q(\mathbf{u} + \mathbf{v}) - Q(\mathbf{u}) - Q(\mathbf{v})].
$$

- (ii) *Let B be a bilinear symmetric form on a* **finite dimensional inner product space** *V with dimension n and Q is the associated quadratic form. Then there is an orthonormal basis* ${e_1, \ldots, e_n}$ *such that* $B(e_i, e_j) = \lambda_i \delta_{ij}$ *and* $Q(\sum_{i=1}^n)$
 $\sum_{i=1}^n \lambda_i a_i^2$. λ_i are called the eigenvalues of B (or Q). a_1, \ldots, e_n such that $B(e_i, e_j) = \lambda_i \delta_{ij}$ and $Q(\sum_{i=1}^n a_i e_i) = \sum_{i=1}^n \lambda_i a_i^2$. λ_i are called the eigenvalues of *B* (or *Q*).
- (iii) Let B , V and Q as in (ii) and let $\langle \cdot, \rangle$ denote the inner product *on V*. The the mapping $A: V \to V$ *with* A **u** *defined by*

$$
\langle A\mathbf{u}, \mathbf{v} \rangle = B(\mathbf{u}, \mathbf{v})
$$

for all **v** *is a self-adjoint linear transformation. Conversely, every self-adjoint linear transformation A induces a symmetric bilinear form B by the above relation. Moreover, the* λ_i *in (ii) are the eigenvalues of A.*

Assignment 4, Due Friday Oct 3, 2014

- (1) Find the equation of the tangent space:
	- (i) at a point (a, b, c) on the regular surface $M = \{(x, y, z) \in$ $\mathbb{R}^3 | f(x, y, z) = 0$, assuming 0 is a regular value of *f*;
		- (ii) at the point $(a, b, 0)$ on the surface $x^2 + y^2 z^2 = 1$.
		- Find a unit normal in (i) and (ii).
- (2) Find the coefficients E, F, G of first fundamental forms of the following surfaces:

(i) $X(u, v) = (a \sin u \cos v, b \sin u \sin v, c \cos u), a, b, c > 0;$ (ellipsoid)

(ii) the unit sphere under the stereographic projection:

$$
x(u, v) = \frac{4u}{A}, y(u, v) = \frac{4v}{A}, z(u, v) = \frac{2(u^2 + v^2)}{A},
$$

where $A = u^2 + v^2 + 4$.

- (3) Let $\mathbf{X}(u, v)$ be a coordinate parametrization of a regular surface. Prove that $|\mathbf{X}_u \times \mathbf{X}_v| = \sqrt{EG - F^2}$.
- (4) Let *C* be a simple (i.e. no self intersection) regular curve in *xz*-plane with length *l* and is given by $\alpha(s) = (x(s), 0, z(s))$ with $0 \leq s \leq l$ is the arc length. Assume $x(s) > 0$ for all *s*. Show that the area of the surface *M* of revolution by rotating *C* about the *z* axis is given by

$$
Area(M) = 2\pi \int_0^l x(s)ds.
$$