****Midterm exam will be on Oct 8, Wednesday 10:30am– 12:15pm****

Some properties on curves

Theorem 1. Let α be a regular curves in \mathbb{R}^3 parametrized by arc length.

- (i) *Suppose the curvature* $k \equiv 0$ *if and only if* α *is a straight line.*
- (ii) *Suppose the curvature* $k > 0$ *and the torsion* $\tau \equiv 0$ *if and only if α is a plane curve.*
- (iii) *Suppose the curvature* $k = k_0 > 0$ *is a constant and* $\tau \equiv 0$ *, then* α *is a circular arc with radius* $1/k_0$.
- (iv) *Suppose the curvature* $k > 0$ *and the torsion* $\tau \neq 0$ *everywhere. α lies on s sphere if and only if* $\rho^2 + (\rho')^2 \lambda^2 = constant$, where $\rho = 1/k$ *and* $\lambda = 1/\tau$.
- (v) *Suppose the curvature* $k = k_0 > 0$ *is a constant and* $\tau = \tau_0$ *is a constant. Then α is a circular helix.*
- (vi) *Suppose* α *is defined on* [a, b]*. Let* $\mathbf{p} = \alpha(a)$ *and* $\mathbf{q} = \alpha(b)$ *. Then the length l of* α *satisfies* $l \geq |\mathbf{p} - \mathbf{q}|$ *. Moreover, equality holds if and only if* α *is the straight line from* **p** *to* **q**.

Plane curves

Definition 1. Let $\alpha : [a, b] \to \mathbb{R}^2$ be a regular plane curve. Let *T* be the unit tangent of α . Define the unit normal of α to be the unit vector *N* such that *T, N* is positively oriented. Define the curvature *k* to be the number such that $T' = kN$.

Isoperimetric inequality

Definition 2. Let $\alpha : [a, b] \to \mathbb{R}^3$ be a regular smooth or piecewise smooth curved.

- (i) α is said to be **closed** if α is smooth at a, b and $\alpha(a) = \alpha(b)$. $\alpha'(a) = \alpha'(b), \ldots$
- (ii) α is said to be **simple** if $\alpha(t_1) \neq \alpha(t_2)$ for $a \leq t_1 < t_2 < b$.

Theorem 2. (Jordan curve theorem) *Every simple closed curve on* \mathbb{R}^2 *will divide* \mathbb{R}^2 *into two arcwise connected components, one of them is bounded (the interior of the curve) and another one is unbounded (the exterior of the curve).*

Definition 3. Let $\alpha : [a, b] \to \mathbb{R}^2$ be a closed curve which bounds a domain *D*. *α* is said to be *positively oriented* if the unit normal *N* is pointing into the interior of *α*.

Theorem 3. (Isoperimetric inequality) *Let α be a simple closed curve on* \mathbb{R}^2 *. Let A be the area of the interior of* α *and l be the length of* α *. Then* $l^2 \geq 4\pi A$ *, with equality holds if and only if* α *is a circle.*

We need the *Divergence Theorem, or Gauss-Green's Theorem or Ostrogradsky's Theorem*:

Theorem 4. *Let* **X** *be a smooth vector field defined and in the interior of a positively oriented closed curve* α *which bounds a domain* D *in* \mathbb{R}^2 *.*

$$
\int_{D} \operatorname{div} \mathbf{X} \, dx dy = \int_{\alpha} \langle \mathbf{X}, \nu \rangle ds
$$

where ν *is the unit outward normal of* α *.*

We also need the following fact from Fourier series.

Lemma 1. Let f be a smooth periodic function on \mathbb{R} with period 2π *such that*

$$
\int_0^{2\pi} f(t)dt = 0.
$$

Then

$$
\int_0^{2\pi} (f')^2(t)dt \ge \int_0^{2\pi} f^2(t)dt
$$

with equality holds if and only if $f(t) = a \cos t + b \sin t$ *for some constants a, b.*

Assignment 2: Due Friday, 19/9/2014

- (1) Suppose α is regular curve with curvature $k(s) = k_0 > 0$ is constant and torsion $\tau(s) = \tau_0 \neq 0$ is constant. Show that α is part of a circular helix and determine the circular helix in terms of k_0 and τ_0 .
- (2) Let α be a regular curve parametrized by arc length with curvature $k > 0$. Let T be the unit tangent vector of α . Prove that τ/k is constant if and only if there is a constant unit vector \vec{u} such that $\langle T, \vec{u} \rangle$ is constant on α . (Such a curve is called a generalized helix).
- (3) Let AB be line segment in \mathbb{R}^2 . Let $l >$ length of AB be fixed. Show that the curve α joining A and B , with length l , which together with *AB* forms a Jordan curve, bounds the largest possible area is an arc of a circle passing through *A* and *B*.
- (4) Let α be a smooth plane curve in \mathbb{R}^2 which is contained in a disk of radius $r > 0$. Prove that there is a point $p \in \alpha$ such that the curvature $k(p)$ of α at p satisfies $|k(p)| \geq 1/r$.