Midterm exam will be on Oct 8, Wednesday 10:30am– 12:15pm

Some properties on curves

Theorem 1. Let α be a regular curves in \mathbb{R}^3 parametrized by arc length.

- (i) Suppose the curvature $k \equiv 0$ if and only if α is a straight line.
- (ii) Suppose the curvature k > 0 and the torsion $\tau \equiv 0$ if and only if α is a plane curve.
- (iii) Suppose the curvature $k = k_0 > 0$ is a constant and $\tau \equiv 0$, then α is a circular arc with radius $1/k_0$.
- (iv) Suppose the curvature k > 0 and the torsion $\tau \neq 0$ everywhere. α lies on s sphere if and only if $\rho^2 + (\rho')^2 \lambda^2 = constant$, where $\rho = 1/k$ and $\lambda = 1/\tau$.
- (v) Suppose the curvature $k = k_0 > 0$ is a constant and $\tau = \tau_0$ is a constant. Then α is a circular helix.
- (vi) Suppose α is defined on [a, b]. Let $\mathbf{p} = \alpha(a)$ and $\mathbf{q} = \alpha(b)$. Then the length l of α satisfies $l \ge |\mathbf{p} - \mathbf{q}|$. Moreover, equality holds if and only if α is the straight line from \mathbf{p} to \mathbf{q} .

Plane curves

Definition 1. Let $\alpha : [a, b] \to \mathbb{R}^2$ be a regular plane curve. Let T be the unit tangent of α . Define the unit normal of α to be the unit vector N such that T, N is positively oriented. Define the curvature k to be the number such that T' = kN.

Isoperimetric inequality

Definition 2. Let $\alpha : [a, b] \to \mathbb{R}^3$ be a regular smooth or piecewise smooth curved.

- (i) α is said to be **closed** if α is smooth at a, b and $\alpha(a) = \alpha(b)$, $\alpha'(a) = \alpha'(b), \ldots$
- (ii) α is said to be **simple** if $\alpha(t_1) \neq \alpha(t_2)$ for $a \leq t_1 < t_2 < b$.

Theorem 2. (Jordan curve theorem) Every simple closed curve on \mathbb{R}^2 will divide \mathbb{R}^2 into two arcwise connected components, one of them is bounded (the interior of the curve) and another one is unbounded (the exterior of the curve).

Definition 3. Let $\alpha : [a, b] \to \mathbb{R}^2$ be a closed curve which bounds a domain D. α is said to be *positively oriented* if the unit normal N is pointing into the interior of α .

Theorem 3. (Isoperimetric inequality) Let α be a simple closed curve on \mathbb{R}^2 . Let A be the area of the interior of α and l be the length of α . Then $l^2 \geq 4\pi A$, with equality holds if and only if α is a circle.

We need the Divergence Theorem, or Gauss-Green's Theorem or Ostrogradsky's Theorem:

Theorem 4. Let \mathbf{X} be a smooth vector field defined and in the interior of a positively oriented closed curve α which bounds a domain D in \mathbb{R}^2 .

$$\int_{D} \operatorname{div} \mathbf{X} \, dx dy = \int_{\alpha} \langle \mathbf{X}, \nu \rangle ds$$

where ν is the unit outward normal of α .

We also need the following fact from Fourier series.

Lemma 1. Let f be a smooth periodic function on \mathbb{R} with period 2π such that

$$\int_0^{2\pi} f(t)dt = 0.$$

Then

$$\int_{0}^{2\pi} (f')^2(t)dt \ge \int_{0}^{2\pi} f^2(t)dt$$

with equality holds if and only if $f(t) = a \cos t + b \sin t$ for some constants a, b.

Assignment 2: Due Friday, 19/9/2014

- (1) Suppose α is regular curve with curvature $k(s) = k_0 > 0$ is constant and torsion $\tau(s) = \tau_0 \neq 0$ is constant. Show that α is part of a circular helix and determine the circular helix in terms of k_0 and τ_0 .
- (2) Let α be a regular curve parametrized by arc length with curvature k > 0. Let T be the unit tangent vector of α . Prove that τ/k is constant if and only if there is a constant unit vector \vec{u} such that $\langle T, \vec{u} \rangle$ is constant on α . (Such a curve is called a generalized helix).
- (3) Let AB be line segment in \mathbb{R}^2 . Let l > length of AB be fixed. Show that the curve α joining A and B, with length l, which together with AB forms a Jordan curve, bounds the largest possible area is an arc of a circle passing through A and B.
- (4) Let α be a smooth plane curve in \mathbb{R}^2 which is contained in a disk of radius r > 0. Prove that there is a point $p \in \alpha$ such that the curvature k(p) of α at p satisfies $|k(p)| \ge 1/r$.