A proof of the lemma in previous note

Lemma 1. Let $a_1(t), a_2(t)$ be smooth functions on $(T_1, T_2) \subset \mathbb{R}$ such that $a_1^2 + a_2^2 = 1$. For any $t_0 \in (T_1, T_2)$ and θ_0 such that $a_1(t_0) = \cos \theta_0$, $a_2(t_0) = \sin \theta_0$, there exists unique a smooth function $\theta(t)$ with $\theta(t_0) = \theta_0$ such that $a_1(t) = \cos \theta(t)$ and $a_2(t) = \sin \theta(t)$.

Proof. (Sketch) Suppose θ satisfies the condition. Then $a'_1 = -\theta' \sin \theta$, $a'_2 = \theta' \cos \theta$. Hence $\theta' = a_1 a'_2 - a_2 a'_1$. From this we have uniqueness. To prove existnce, fix $t_0 \in (T_1, T_2)$ and let θ_0 be such that $\cos \theta_0 = a_1(0)$, $\sin \theta_0 = a_2(0)$. Let

$$\theta(t) = \theta_0 + \int_{t_0}^t (a_2'a_1 - a_1'a_2)d\tau.$$

Let $f = (a_1 - b_1)^2 + (a_2 - b_2)^2$, where $b_1 = \cos \theta$, $b_2 = \sin \theta$. Then $f = 2 - 2a_1b_1 - 2a_2b_2$. Then

$$-\frac{1}{2}f' = a'_{1}b_{1} + a_{1}b'_{1} + a'_{2}b_{2} + a_{2}b'_{2}$$

$$= a'_{1}b_{1} - \theta'a_{1}b_{2} + a'_{2}b_{2} + \theta'a_{2}b_{1}$$

$$= (a'_{2}a_{1} - a'_{1}a_{2})(-a_{1}b_{2} + a_{2}b_{1}) + a'_{1}b_{1} + a'_{2}b_{2}$$

$$= -a_{1}^{2}a'_{2}b_{2} + a_{2}a'_{2}a_{1}b_{1} + a_{1}a'_{1}a_{2}b_{2} - a_{2}^{2}a'_{1}b_{1} + a'_{1}b_{1} + a'_{2}b_{2}$$

$$= -a_{1}^{2}a'_{2}b_{2} - a_{1}a'_{1}a_{1}b_{1} - a_{2}a'_{2}a_{2}b_{2} - a_{2}^{2}a'_{1}b_{1} + a'_{1}b_{1} + a'_{2}b_{2}$$

$$= 0$$

because $a_1^2 + a_2^2 = 1$ and $a_1a_1' + a_2a_2' = 0$.

Minimal surfaces

Definition 1. A regular surface M is said to be *minimal* if the mean curvature of M is identically zero.

Definition 2. Let $\mathbf{X}(u, v)$ be a local parametrization of a regular surface. **X** is said to be *isothermal* if $|\mathbf{X}_u| = |\mathbf{X}_v|$, and $\langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0$.

To check whether a surface is minimal, the following fact is useful.

Proposition 1. Let $\mathbf{X}(u, v)$ be an isothermal coordinate parametrization of a regular surface M. Let $\mathbf{n} = \mathbf{X}_u \times \mathbf{X}_v / |\mathbf{X}_u \times \mathbf{X}_v|$. Then

$$\mathbf{X}_{uu} + \mathbf{X}_{vv} = 2\lambda^2 H \mathbf{n}$$

where H is the mean curvature, i.e. $H = \frac{1}{2} \frac{eG - 2fG + gE}{EG - F^2}$, where e, f, g are the coefficients of the second fundamental form.

Proof. (Sketch)

 $\langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{X}_{u} \rangle = \frac{1}{2} \langle \mathbf{X}_{u}, \mathbf{X}_{u} \rangle_{u} - \langle \mathbf{X}_{v}, \mathbf{X}_{uv} \rangle = \frac{1}{2} \langle \mathbf{X}_{u}, \mathbf{X}_{u} \rangle_{u} - \frac{1}{2} \langle \mathbf{X}_{v}, \mathbf{X}_{v} \rangle_{v} = 0.$ Similarly, $\langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{X}_{v} \rangle = 0.$ Hence

$$\mathbf{X}_{uu} + \mathbf{X}_{vv} = \langle \mathbf{X}_{uu} + \mathbf{X}_{vv}, \mathbf{n} \rangle \mathbf{n} = (e+g)\mathbf{n} = 2\lambda^2 H \mathbf{n}$$

because

$$H = \frac{1}{2} \frac{eG - 2fF + Eg}{EG - F^2} = \frac{1}{2} \frac{e + g}{\lambda^2}.$$

Corollary 1. Suppose $\mathbf{X}(u, v)$ is an an isothermal coordinate parametrization of a regular surface M. M is a minimal surface if and only if $\mathbf{X}_{uu} + \mathbf{X}_{vv} = 0$. (That is: each coordinate function is harmonic as a function of u, v.)

Remark 1. Let $\mathbf{X}(u, v)$ be a coordinate parametrization of M. Let $\phi_1 = x_u - \sqrt{-1}x_v, \ \phi_2 = y_u - \sqrt{-1}y_v, \ \phi_3 = z_u - \sqrt{-1}z_v$. Then

(i) **X** is isothermal if and only if $\phi_1^2 + \phi_2^2 + \phi_3^2 = 0$.

(ii) M is minimal if and only if ϕ_i are analytic for i = 1, 2, 3.

First variational formula for area

Let $\mathbf{X} : U \subset \mathbb{R}^2 \to \mathbb{R}^3$ be a coordinate parametrization of a regular surface M. Let \overline{D} be a compact domain in U and let $Q = \mathbf{X}(D) \subset M$. Let h(u, v) be a smooth function on \overline{D} . Let $\mathbf{n} = \mathbf{X}_u \times \mathbf{X}_v / |\mathbf{X}_u \times \mathbf{X}_v|$ be the unit normal of the surface. Define:

$$\mathbf{Y}(u, v; t) = \mathbf{X}(u, v) + th(u, v)\mathbf{n}(u, v).$$

Lemma 2. There exists $\epsilon > 0$ such that for each fixed t with $|t| < \epsilon$, $\mathbf{Y}(u, v; t)$ represent a parametrized regular surface. ($\mathbf{Y}(u, v; t)$ is called a normal variation of \overline{Q} .)

Proof. (Sketch)
$$\mathbf{Y}_u = \mathbf{X}_u + t(h_u \mathbf{n} + h \mathbf{n}_u)$$
, etc. So
 $\mathbf{Y}_u \times \mathbf{Y}_v = \mathbf{X}_u \times \mathbf{X}_v + t \left[(h_u \mathbf{n} + h \mathbf{n}_u) \times \mathbf{X}_v + \mathbf{X}_u \times (h_v \mathbf{n} + h \mathbf{n}_v) \right]$
 $+ t^2 (h_u \mathbf{n} + h \mathbf{n}_u) \times (h_u \mathbf{n} + h \mathbf{n}_u)$
 $= \mathbf{X}_u \times \mathbf{X}_v + R(u, v, t).$

Since $|\mathbf{X}_u \times \mathbf{X}_v| \ge C_1$ for some $C_1 > 0$ on \overline{D} and $|R| \le \epsilon C_2$ for some $C_2 > 0$ on \overline{D} independent of ϵ . So $\mathbf{Y}_u \times \mathbf{Y}_v \neq \mathbf{0}$ if ϵ is small enough. \Box

Let $\epsilon > 0$ be as above. Define A(t) to be the area of

$$M(t) = \{ \mathbf{Y}(u, v, t) | (u, v) \in D \}.$$

Theorem 1 (First variation of area).

$$\left.\frac{dA}{dt}\right|_{t=0} = -2\iint_{\overline{Q}} hHdA$$

where H is the mean curvature of M. Here for any function ϕ on \overline{D} ,

$$\iint_{\overline{Q}} \phi dA := \iint_{\overline{D}} \phi | \mathbf{X}_u \times \mathbf{X}_v | du dv.$$

Proof. (Sketch) Let $E(u, v, t) = \langle \mathbf{Y}_u(u, v, t), \mathbf{Y}_u(u, v, t) \rangle$ etc. Let $E_0(u, v) = E(u, v, 0)$ etc (which are the coefficients of the first fundamental form of **X**).

$$E(u, v, t) = E_0(u, v) + 2th(u, v)\langle \mathbf{n}_u, \mathbf{X}_u \rangle + O(t^2) = E_0(u, v) - 2th(u, v)e(u, v) + O(t^2);$$

$$F(u, v, t) = F_0(u, v) + 2th(u, v)\langle \mathbf{n}_u, \mathbf{X}_v \rangle + O(t^2) = F_0(u, v) - 2th(u, v)f(u, v) + O(t^2);$$

$$G(u, v, t) = G_0(u, v) + 2th(u, v)\langle \mathbf{n}_v, \mathbf{X}_v \rangle + O(t^2) = G_0(u, v) - 2th(u, v)g(u, v) + O(t^2),$$

where e f a are the coefficients of the second fundamental form of **X**

where e, f, g are the coefficients of the second fundamental form of **X**. Hence

$$EG - F^{2} = E_{0}G_{0} - F_{0}^{2} - 2t \left(eG_{0} - 2fF_{0} + gG_{0}\right) + O(t^{2}).$$

Hence

$$\begin{aligned} A(t) &= \iint_{\overline{D}} \sqrt{(EG - F^2)} du dv \\ &= \iint_{\overline{D}} \sqrt{E_0 G_0 - F_0^2} du dv - t \iint_{\overline{D}} h \frac{eG_0 - 2fF_0 + gG_0}{\sqrt{E_0 G_0 - F_0^2}} du dv + O(t^2) \\ &= \iint_{\overline{D}} \sqrt{E_0 G_0 - F_0^2} du dv - 2t \iint_{\overline{Q}} h H dA + O(t^2). \end{aligned}$$

Corollary 2. A'(0) = 0 for all normal variation of \overline{Q} if and only if $H \equiv 0$ on Q. Actually, a regular surface M is minimal if and only if A'(0) = 0 for all normal variation of M with compact support: i.e. any variation by $f\mathbf{n}$ where f has satisfies $\overline{f \neq 0}$ is a compact set in M.

To prove the theorem, we need to construct a so-called $bump \ function,$ starting with

$$\phi(t) = \begin{cases} 0, & \text{if } t \le 0; \\ e^{-\frac{1}{t}}, & \text{if } t > 0. \end{cases}$$

Consider the function:

$$\Phi(t) = \frac{\psi_1(t)}{\psi_1(t) + \psi_2(t)}$$

where

$$\psi_1(t) = \phi(2+t)\phi(2-t), \psi_2(t) = \phi(t-1) + \phi(-1-t).$$

Then $\Phi(t)$ satisfies $\Phi(t) \ge 0$, and

$$\Phi(t) = \begin{cases} 1, & \text{if } |t| \le 1; \\ 0, & \text{if } |t| \ge 2. \end{cases}$$

A reference for minimal surfaces: Osserman, A survey of minimal surfaces.

Assignment 10, Due Friday Nov 28, 2014

(1) Show that the helicoid:

 $\mathbf{X}(u, v) = (a \sinh v \cos u, a \sinh v \sin u, au),$

and the Enneper's surface

$$\mathbf{X}(u,v) = \left(u - \frac{u^3}{3} + uv^2, v - \frac{v^3}{3} + vu^2, u^2 - v^2\right).$$

are minimal surfaces.

(2) Let M be the surface of revolution by rotating the $(\phi(v), 0, v)$ about z-axis, so that M is parametrized by $\mathbf{X}(u, v) = (\phi(v) \cos u, \phi(v) \sin u, v)$ Show that the mean curvature (w.r.t. to the unit normal $\frac{\mathbf{X}_u \times \mathbf{X}_v}{|\mathbf{X}_u \times \mathbf{X}_v|}$) of the surface is given by

$$H = -\frac{1 + (\phi')^2 - \phi \phi''}{2\phi \left(1 + (\phi')^2\right)^{\frac{3}{2}}}.$$

(3) Let $\mathbf{X}(u, v) = (x_1(u, v), x_2(u, v), x_3(u, v))$ be a local parametrization of a regular surface M such that the coefficients of the first fundamental form satisfy E = G and F = 0. Let $\xi_i = \frac{\partial x_i}{\partial u}$, $\eta_i = \frac{\partial x_i}{\partial v}$. Prove that if M is minimal then for each i, the functions ξ_i, η_i satisfy the Cauchy-Riemann equations:

$$\frac{\partial \xi_i}{\partial u} = -\frac{\partial \eta_i}{\partial v}, \quad \frac{\partial \xi_i}{\partial v} = \frac{\partial \eta_i}{\partial u}$$
(Hence $\xi_i - \sqrt{-1}\eta_i$ is analytic.)

Isaac Newton: "I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me."

4