A proof of the lemma in previous note

Lemma 1. Let ay(t),as(t) be smooth functions on (T1,T5) C R such
that a2 +a% = 1. For any ty € (Ty,Ty) and Oy such that a(ty) = cos 6y,
as(ty) = sinby, there exists unique a smooth function 6(t) with 6(ty) =
0o such that ai(t) = cosO(t) and as(t) = sinf(t).

Proof. (Sketch) Suppose 6 satisfies the condition. Then a} = —6'sin6,
ay = 0" cosf. Hence ¢ = ayal,—asa). From this we have uniqueness. To
prove existnce, fix ¢ty € (71, T») and let 6y be such that cosfy = a1(0),
sin By = a2(0). Let

t
0(t) = 6y —i—/ (aya; — ajag)dr.
to

Let f = (a1 — b1)* + (ag — b2)?, where by = cosf,by = sinf. Then
f =2 —2a;b; — 2asby. Then

—%f’ =ay by + a1} + abby + asll,
=ayby — 0'ayby + ayhy + 0'asby
=(ayay — ajas)(—arby + ashy) + ajby + ayby
= — alabby + axahaiby + ayalashy — azalby + aiby + abby
= — ajabby — ayalarby — asalashy — azalby + aiby + ayby
=0
because a? + a3 = 1 and a;a} + agal, = 0. O
Minimal surfaces

Definition 1. A regular surface M is said to be minimal if the mean
curvature of M is identically zero.

Definition 2. Let X(u,v) be a local parametrization of a regular sur-
face. X is said to be isothermal if |X,| = |X,|, and (X,,X,) = 0.

To check whether a surface is minimal, the following fact is useful.

Proposition 1. Let X(u,v) be an isothermal coordinate parametriza-
tion of a regqular surface M. Let n = X, x X,,/|X, X X,|. Then

X + X, = 2\2Hn

where H is the mean curvature, i.e. H = %eGgéf#, where e, f, g are

the coefficients of the second fundamental form.
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Proof. (Sketch)

1 1 1
<qu+va7 Xu> = §<XU7 Xu>u_<Xva Xuv> - §<XU7 Xu>u_§<Xv7 Xv>v =0.
Similarly, (X, + Xy, X,) = 0. Hence
X + Xy = (Xyuy + Xop, n)n = (e + g)n = 2)*Hn

because
_leG-2fF+FEg le+g
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Corollary 1. Suppose X(u,v) is an an isothermal coordinate parametriza-
tion of a regqular surface M. M is a minimal surface if and only if
Xuu + Xyw = 0. (That is: each coordinate function is harmonic as a
function of u,v.)

Remark 1. Let X(u,v) be a coordinate parametrization of M. Let
¢1 =Ty — \/__1371)7 ¢2 = Yu — \/__1yv7 ¢3 = 2y — \/__12v~ Then

(i) X is isothermal if and only if ¢? + ¢35 + ¢3 = 0.

(ii) M is minimal if and only if ¢; are analytic for i = 1,2, 3.

First variational formula for area
Let X : U C R? = R? be a coordinate parametrization of a regular
surface M. Let D be a compact domain in U and let Q = X(D) C M.
Let h(u,v) be a smooth function on D. Let n = X, x X, /|X, x X,|
be the unit normal of the surface. Define:

Y (u,v;t) = X(u,v) + th(u, v)n(u,v).

Lemma 2. There exists € > 0 such that for each fized t with |t| < e,
Y (u,v;t) represent a parametrized reqular surface. (Y (u,v;t) is called
a normal variation of Q).)

Proof. (Sketch) Y, = X, + t(h,n + hn,), etc. So
Y. xY, =X, XX, +t[(hyn+ hn,) x X, + X, X (h,n + hn,)]
+ t*(h,n + hn,) x (h,n + hn,)
=X, x X, + R(u,v,1).

Since |X, iX”| > () for some C; > 0 on D and |R| < ¢C, for some
C5 > 0on D independent of €. So Y, XY, # 0 if € is small enough. [J

Let € > 0 be as above. Define A(t) to be the area of
M(t) = {Y(u,v,t)|(u,v) € D}.



Theorem 1 (First variation of area)

:—2// hHdA

where H is the mean curvature of M. Here for any function ¢ on D,

J[[oia= [ o, X dude

Proof. (Sketch) Let E(u,v,t) = (Y, (u,v,t), Yy (u,v,t)) etc. Let Ey(u,v) =

E(u,v,0) etc (which are the coefficients of the first fundamental form

of X).

E(u,v,t) =Eo(u,v) + 2th(u,v)(n,, X,) + O(t?) = Eo(u,v) — 2th(u,v)e(u,v) + O(t*);
F(u,v,t) =Fp(u,v) + 2th(u, v)(n,, X,) + O(t?) = Fy(u,v) — 2th(u,v) f(u,v) + O(t?);
G(u,v,t) =Go(u,v) + 2th(u,v)(n,, X,) + O(t*) = Go(u, v) — 2th(u,v)g(u,v) + O(t?),

where e, f, g are the coefficients of the second fundamental form of X.
Hence

EG — F? = EyGo — Fy — 2t (eGo — 2f Fy + gGo) + O(#?).

Hence

= / | V(EG — F*)dudv
D
G —2fF0+gG0
- EG—F?dudv—t//he 0 dudv + O(#?
//D\/ \Go— F; [ n g ()
:// ,/EOGD—ngudu—Qt// hHdA + O(t?).
D Q

Corollary 2. A'(0) = 0 for all normal variation of Q if and only if
H =0 on Q. Actually, a regular surface M is minimal if and only if
A'(0) = 0 for all normal variation of M with compact support: i.e. any
variation by fn where f has satisfies f # 0 is a compact set in M.

~—

O

To prove the theorem, we need to construct a so-called bump func-
tion, starting with
0 if t <0;
t — ) — )
o(t) { 6_%, if t > 0.

Consider the function:



4

where
Ui(t) = G2 +1)d(2 — 1), ¥a(t) = ot — 1) + ¢(—1 — t).
Then ®(t) satisfies ®(¢) > 0, and

NERTES
(?) —{ 0. if [t > 2.

A reference for minimal surfaces: Osserman, A survey of minimal
surfaces.

Assignment 10, Due Friday Nov 28, 2014
(1) Show that the helicoid:
X(u,v) = (asinh v cos u, asinh v sin u, au),
and the Enneper’s surface

U3 U3
X(u,v) = <u— §+uv2,v— §+vu2,u2 —v2> .

are minimal surfaces.

(2) Let M be the surface of revolution by rotating the (¢(v),0,v)
about z-axis, so that M is parametrized by X (u, v) = (¢(v) cosu, ¢(v) sinu, v)
Show that the mean curvature (w.r.t. to the unit normal |§Z§§;f|)

of the surface is given by
14 (¢)— ¢
26 (1+ (¢/)2)?

(3) Let X(u,v) = (x1(u,v), z2(u,v), x3(u, v)) be alocal parametriza-
tion of a regular surface M such that the coefficients of the first
fundamental form satisfy £ = G and F' = 0. Let & = %,
N = %’f}. Prove that if M is minimal then for each ¢, the func-
tions &;, n; satisfy the Cauchy-Riemann equations:

9 o S - on;
ou v v Ou’
(Hence & — /—1n; is analytic.)

H =

Isaac Newton: “I do not know what I may appear to the world,
but to myself I seem to have been only like a boy playing on the sea-
shore, and diverting myself in now and then finding a smoother pebble
or a prettier shell than ordinary, whilst the great ocean of truth lay all
undiscovered before me.”



