1. Some remarks

(i) Geodesic curvature is intrinsic in the following sense. Let My, My
be regular oriented surfaces and F': M; — M, be an isometry
and is orientation preserving: i.e. if v, w are positively oriented
in My, then dF(v),dF(w) are positively oriented on M,. Sup-
pose «(s) is a regular curve on M. Let 5(s) = F o «(s). Then
the geodesic curvature of a at «(s) is equal to the geodesic
curvature of 5 at [(s).

(ii) Let My, My be regular surfaces. A smooth map F': M; — M,
is a local 1sometry if for any p € M; there is neighborhood U of
p and a neighborhood V' of ¢ = F(p) such that F': U — V is
an isometry.

(iii) A local isometry will map geodesics to geodesics.

(iv) Let F be a Euclidean motion on R?, i.e. F/(x) = Ax-+bg where
A is a orthogonal matrix and bg. Let M be a regular surface
and let N = F(M). Then F': M — N is an isometry.

2. Geodesics of surfaces of revolution

Let (¢(v),0,7%(v)) be a regular curve on the zz-plane such that:

(i) ¢(v) > 0, i.e. the curve does not intersect the z-axis.
(i) (¢u)* + (¥,)? = 1, i.e. the curve is parametrized by arc length.

Consider the surface of revolution M given by

X(“? U) = <¢<U) COs u? ¢(U) SiIl U, ¢(U))
The curve X(ug,v) where ug is a constant is called a meridian; and
the curve X (u,vg) where vy is a constant is called a parallel.

Lemma 1. The first fundamental form is given by:

g = F=(X,X,) = ¢,

gi2= g =1F= <Xu>Xv> =0

g22 = G = <XfuaXv> = <¢v)2 + (¢v)2 = 1.
The Christoffel symbols are: T1, = Ty = ¢,/¢, T3 = —p¢, and all
other Ffj are zeros.

Proof. (Sketch) g'' =1/¢?, g'* = ¢*' =0, ¢*> = 1. Hence

1, 1
Ly = 591 (Gim.j + Gmii = Gijm) = 252 (9i15 + 9154 = 9ig1) -

Hence )
Fh = @i = 0;
F%Q ]-—%1 = ﬁ (gll,v + ng,u - gl?,u) = %}7

[l = —phgm, =0
1



1, 1
F?j = 592 (Gim,j + Gmii — Gijm) = B (Giz,j + 924 — Gij2) -
F;l = —2%911,2 = —OPy;
I, = F211 =0
[, = —39220,=0

Lemma 2. «o(t) = X(u(t),v(t)) is a geodesic if and only if

u”+ %u’v’ =0,
v~ ¢¢v<u/)2 = 0.

Corollary 1. Any meridian is a geodesic. A parallel X(u,vq) is a
geodesic if and only if ¢,(ve) = 0.

To study the behavior of general geodesics, first we have the following
lemma:

Lemma 3. Let ay(t),as(t) be smooth functions on (T1,T5) C R such
that a2 +a% = 1. For any ty € (Ty,Ty) and 0y such that a(tg) = cos 6y,
as(ty) = sinby, there exists unique a smooth function 6(t) with 6(ty) =
0o such that ai(t) = cosO(t) and ay(t) = sinf(t).

Proof. (Sketch) Suppose 6 satisfies the condition. Then a} = —6'sin6,
ay = 0" cosf. Hence 0 = ayay — asa). From this we have uniqueness.
To prove existence, fix ty € (T1,T3) and let §y be such that cosfy =

a1(0), sinfy = az(0). Let

t
G(t) = 90 —|—/ (ala’Q — aga/l)dT

to

and let by = cos0(t), by = sin@(t). Let f = (ay — by)? + (az — by)?, then
one can check that f' = 0. So € is a smooth function and is a required
function. 0

Now let a(s) = X(u(s),v(s)) be a geodesic on M parametrized by
arc length. Let e; = X,,/|X,| and ex = X,,/|X,].

o = aje; + asze,.

By the lemma there exists smooth function 6(s) such that a; = sin#@,
as = 6. Note that # is the angle between o’ and the meridian.

Proposition 1 (CLAIRAUT’S THEOREM). r(s)sin 6(s) is constant along
«, where r(s) is the distance of a(s) from the z-awis.



Proof. (Sketch) Denote the 4% by o etc. Since r(s) = ¢(v(s)),

= g,

Also sinf = (o', e1) = /¢, so (sinf) = u"¢ + u'v'¢p,.
(rsind)’ =g, v'u'¢ +u" ¢ + g u'v

=¢ <u” + Q%zvu'v')

=0.
U

Let us analyse a geodesic a(s), 0 < s < L < oo, on the surface
of revolution parametrized by arc length. Assume « is not a parallel.
Let us also assume that ¢(v) is increasing. Let r(s) and 6(s) as the
theorem. Let 6, = 6(0). We may assume that 0 < 6y < 7. By
the theorem, r(s)sinf(s) = R for some constant R > 0. Note that
r(s) > R.

e If R =0, then « is a meridian.

e R > 0. Note cos? =1 — f—;. Then the geodesic will go up for
all s, as long as r > R, i.e. the 2z coordinate of « is increasing
in s. Either o does not come close to any parallel of radius R,
and «a will go up for all s, or a will be close to a parallel C' of
radius R. Let C' be the first such parallel above «. Then we
have the following cases:

(i) C is a geodesic. Then a will not meet C. (Why?) So «
must come arbitrarily close to C' without intersecting C'.

(ii) a(so) € C for some so. At such a point 0(sg) = 7. C
is not a geodesic, so at this point ¢, # 0, and so ¢, <
0. (Why?) Hence the parallels just above C' should have
smaller radius. Hence v must bounce off from C' and turn
downward.

Assignment 9, Due Friday Nov 21, 2014

(1) Write down the differential equations for the geodesics on the
torus:

X(u,v) = ((a + rcosv) cosu, (a + rcosv)sinu, rsinv)

with a > r > 0. Also, show that if a is a geodesic start at a point
on the topmost parallel (a cos u, asinu, ) and is tangent to this
parallel, then o will stay in the region with —7/2 < v < 7/2.
(2) Let a be a geodesic on a surface of revolution. Using the same
notation as in the Clairuat’s Theorem, suppose r(s) siné(s) = R



which is a positive constant. Prove that if a is not a parallel,
then o will not intersect any parallel which is a geodesic and
has radius R.

(3) Let X : U — M, (uy,uz) = X(ug,us), be a coordinate param-
etization, with U being an open set in R2. Suppose the first
fundamental form in this coordinate satisfies g1 = 0, and g7 =
ga2 = exp(2f) for some smooth function f, i.e. g;; = exp(2f)d;;,
where ¢;; = 1 if ¢ = j and is zero if ¢ # j. Show that the
Christoffel symbols are

Ffj = Oki fj + Onj fi — 0ijfr
where f; = g—{i etc.

(4) With the same assumptions and notation as in the previous
exercise. e; = X1/|X;|, e2 = Xy/|Xz|, and n = e; X es. Let
a(s) be a geodesic on M such that a(s) = X(ui(s), us(s)). Let
0(s) be a smooth function on s such that o/(s) = eq(s) cos0(s)+
ex(s)sinf(s), where e;(s) = ej((s)). Show that a:=n x o' =
—e1(s)sinf(s) + ea(s) cosf(s). Show also that

ky=—(d/,a)
d )
:eXp(—QfM%XhXQ) +0

. /ﬁ /% /
—(—u 8U+U8u) 0

(Note that if f =1, i.e. M is a plane, then k, = 6".)



