
1. Some remarks

(i) Geodesic curvature is intrinsic in the following sense. LetM1,M2

be regular oriented surfaces and F : M1 → M2 be an isometry
and is orientation preserving: i.e. if v,w are positively oriented
in M1, then dF (v), dF (w) are positively oriented on M2. Sup-
pose α(s) is a regular curve on M1. Let β(s) = F ◦ α(s). Then
the geodesic curvature of α at α(s) is equal to the geodesic
curvature of β at β(s).

(ii) Let M1,M2 be regular surfaces. A smooth map F : M1 → M2

is a local isometry if for any p ∈M1 there is neighborhood U of
p and a neighborhood V of q = F (p) such that F : U → V is
an isometry.

(iii) A local isometry will map geodesics to geodesics.
(iv) Let F be a Euclidean motion on R3, i.e. F (x) = Ax+b0 where

A is a orthogonal matrix and b0. Let M be a regular surface
and let N = F (M). Then F :M → N is an isometry.

2. Geodesics of surfaces of revolution

Let (ϕ(v), 0, ψ(v)) be a regular curve on the xz-plane such that:

(i) ϕ(v) > 0, i.e. the curve does not intersect the z-axis.
(ii) (ϕv)

2 + (ψv)
2 = 1, i.e. the curve is parametrized by arc length.

Consider the surface of revolution M given by

X(u, v) = (ϕ(v) cos u, ϕ(v) sin u, ψ(v)).

The curve X(u0, v) where u0 is a constant is called a meridian; and
the curve X(u, v0) where v0 is a constant is called a parallel.

Lemma 1. The first fundamental form is given by: g11 = E = ⟨Xu,Xu⟩ = ϕ2, ;
g12 = g21 = F = ⟨Xu,Xv⟩ = 0
g22 = G = ⟨Xv,Xv⟩ = (ϕv)

2 + (ψv)
2 = 1.

The Christoffel symbols are: Γ1
12 = Γ1

21 = ϕv/ϕ, Γ
2
11 = −ϕϕv and all

other Γk
ij are zeros.

Proof. (Sketch) g11 = 1/ϕ2, g12 = g21 = 0, g22 = 1. Hence

Γ1
ij =

1

2
g1m (gim,j + gmj,i − gij,m) =

1

2ϕ2
(gi1,j + g1j,i − gij,1) .

Hence 
Γ1
11 =

1
2ϕ2 g11,u = 0;

Γ1
12 = Γ1

21 =
1

2ϕ2 (g11,v + g12,u − g12,u) =
ϕv

ϕ
;

Γ1
22 = − 1

2ϕ2 g22,u = 0
1



2

Γ2
ij =

1

2
g2m (gim,j + gmj,i − gij,m) =

1

2
(gi2,j + g2j,i − gij,2) . Γ2

11 = −1
2
g11,2 = −ϕϕv;

Γ2
12 = Γ2

21 = 0
Γ2
22 = −1

2
g22,v = 0

�

Lemma 2. α(t) = X(u(t), v(t)) is a geodesic if and only if{
u′′+ 2ϕv

ϕ
u′v′ = 0,

v′′− ϕϕv(u
′)2 = 0.

Corollary 1. Any meridian is a geodesic. A parallel X(u, v0) is a
geodesic if and only if ϕv(v0) = 0.

To study the behavior of general geodesics, first we have the following
lemma:

Lemma 3. Let a1(t), a2(t) be smooth functions on (T1, T2) ⊂ R such
that a21+a

2
2 = 1. For any t0 ∈ (T1, T2) and θ0 such that a1(t0) = cos θ0,

a2(t0) = sin θ0, there exists unique a smooth function θ(t) with θ(t0) =
θ0 such that a1(t) = cos θ(t) and a2(t) = sin θ(t).

Proof. (Sketch) Suppose θ satisfies the condition. Then a′1 = −θ′ sin θ,
a′2 = θ′ cos θ. Hence θ′ = a1a

′
2 − a2a

′
1. From this we have uniqueness.

To prove existence, fix t0 ∈ (T1, T2) and let θ0 be such that cos θ0 =
a1(0), sin θ0 = a2(0). Let

θ(t) = θ0 +

∫ t

t0

(a1a
′
2 − a2a

′
1)dτ

and let b1 = cos θ(t), b2 = sin θ(t). Let f = (a1− b1)
2+(a2− b2)

2, then
one can check that f ′ = 0. So θ is a smooth function and is a required
function. �

Now let α(s) = X(u(s), v(s)) be a geodesic on M parametrized by
arc length. Let e1 = Xu/|Xu| and e2 = Xv/|Xv|.

α′ = a1e1 + a2e2.

By the lemma there exists smooth function θ(s) such that a1 = sin θ,
a2 = θ. Note that θ is the angle between α′ and the meridian.

Proposition 1 (Clairaut’s Theorem). r(s) sin θ(s) is constant along
α, where r(s) is the distance of α(s) from the z-axis.
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Proof. (Sketch) Denote the dα
ds

by α′ etc. Since r(s) = ϕ(v(s)),

r′ = ϕvv
′.

Also sin θ = ⟨α′, e1⟩ = u′ϕ, so (sin θ)′ = u′′ϕ+ u′v′ϕv.

(r sin θ)′ =ϕvv
′u′ϕ+ u′′ϕ+ ϕvu

′v′

=ϕ

(
u′′ +

2ϕv

ϕ
u′v′

)
=0.

�

Let us analyse a geodesic α(s), 0 ≤ s < L ≤ ∞, on the surface
of revolution parametrized by arc length. Assume α is not a parallel.
Let us also assume that ψ(v) is increasing. Let r(s) and θ(s) as the
theorem. Let θ0 = θ(0). We may assume that 0 ≤ θ0 ≤ π

2
. By

the theorem, r(s) sin θ(s) = R for some constant R ≥ 0. Note that
r(s) ≥ R.

• If R = 0, then α is a meridian.
• R > 0. Note cos2 θ = 1− R2

r2
. Then the geodesic will go up for

all s, as long as r > R, i.e. the z coordinate of α is increasing
in s. Either α does not come close to any parallel of radius R,
and α will go up for all s, or α will be close to a parallel C of
radius R. Let C be the first such parallel above α. Then we
have the following cases:
(i) C is a geodesic. Then α will not meet C. (Why?) So α

must come arbitrarily close to C without intersecting C.
(ii) α(s0) ∈ C for some s0. At such a point θ(s0) = π

2
. C

is not a geodesic, so at this point ϕv ̸= 0, and so ϕv <
0. (Why?) Hence the parallels just above C should have
smaller radius. Hence α must bounce off from C and turn
downward.

Assignment 9, Due Friday Nov 21, 2014

(1) Write down the differential equations for the geodesics on the
torus:

X(u, v) = ((a+ r cos v) cos u, (a+ r cos v) sin u, r sin v)

with a > r > 0. Also, show that if α is a geodesic start at a point
on the topmost parallel (a cosu, a sinu, r) and is tangent to this
parallel, then α will stay in the region with −π/2 ≤ v ≤ π/2.

(2) Let α be a geodesic on a surface of revolution. Using the same
notation as in the Clairuat’s Theorem, suppose r(s) sin θ(s) = R
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which is a positive constant. Prove that if α is not a parallel,
then α will not intersect any parallel which is a geodesic and
has radius R.

(3) Let X : U → M , (u1, u2) → X(u1, u2), be a coordinate param-
etization, with U being an open set in R2. Suppose the first
fundamental form in this coordinate satisfies g12 = 0, and g11 =
g22 = exp(2f) for some smooth function f , i.e. gij = exp(2f)δij,
where δij = 1 if i = j and is zero if i ̸= j. Show that the
Christoffel symbols are

Γk
ij = δkifj + δkjfi − δijfk

where fi =
∂f
∂ui

etc.

(4) With the same assumptions and notation as in the previous
exercise. e1 = X1/|X1|, e2 = X2/|X2|, and n = e1 × e2. Let
α(s) be a geodesic on M such that α(s) = X(u1(s), u2(s)). Let
θ(s) be a smooth function on s such that α′(s) = e1(s) cos θ(s)+
e2(s) sin θ(s), where ei(s) = ei(α(s)). Show that a := n× α′ =
−e1(s) sin θ(s) + e2(s) cos θ(s). Show also that

kg =− ⟨α′, a′⟩

=exp(−2f)⟨ d
ds

X1,X2⟩+ θ′

=

(
−u′∂f

∂v
+ v′

∂f

∂u

)
+ θ′.

(Note that if f = 1, i.e. M is a plane, then kg = θ′.)


