1. Some remarks

- (i) Geodesic curvature is intrinsic in the following sense. Let M₁, M₂ be regular oriented surfaces and F : M₁ → M₂ be an isometry and is orientation preserving: i.e. if v, w are positively oriented in M₁, then dF(v), dF(w) are positively oriented on M₂. Suppose α(s) is a regular curve on M₁. Let β(s) = F ∘ α(s). Then the geodesic curvature of α at α(s) is equal to the geodesic curvature of β at β(s).
- (ii) Let M_1, M_2 be regular surfaces. A smooth map $F: M_1 \to M_2$ is a *local isometry* if for any $p \in M_1$ there is neighborhood U of p and a neighborhood V of q = F(p) such that $F: U \to V$ is an isometry.
- (iii) A local isometry will map geodesics to geodesics.
- (iv) Let F be a Euclidean motion on \mathbb{R}^3 , i.e. $F(\mathbf{x}) = A\mathbf{x} + \mathbf{b_0}$ where A is a orthogonal matrix and $\mathbf{b_0}$. Let M be a regular surface and let N = F(M). Then $F: M \to N$ is an isometry.

2. Geodesics of surfaces of revolution

Let $(\phi(v), 0, \psi(v))$ be a regular curve on the xz-plane such that:

(i) $\phi(v) > 0$, i.e. the curve does not intersect the z-axis.

(ii) $(\phi_v)^2 + (\psi_v)^2 = 1$, i.e. the curve is parametrized by arc length. Consider the surface of revolution M given by

$$\mathbf{X}(u,v) = (\phi(v)\cos u, \phi(v)\sin u, \psi(v)).$$

The curve $\mathbf{X}(u_0, v)$ where u_0 is a constant is called a *meridian*; and the curve $\mathbf{X}(u, v_0)$ where v_0 is a constant is called a *parallel*.

Lemma 1. The first fundamental form is given by:

$$\begin{cases} g_{11} = E = \langle \mathbf{X}_u, \mathbf{X}_u \rangle = \phi^2, ;\\ g_{12} = g_{21} = F = \langle \mathbf{X}_u, \mathbf{X}_v \rangle = 0\\ g_{22} = G = \langle \mathbf{X}_v, \mathbf{X}_v \rangle = (\phi_v)^2 + (\psi_v)^2 = 1. \end{cases}$$

The Christoffel symbols are: $\Gamma_{12}^1 = \Gamma_{21}^1 = \phi_v/\phi$, $\Gamma_{11}^2 = -\phi\phi_v$ and all other Γ_{ij}^k are zeros.

Proof. (Sketch) $g^{11} = 1/\phi^2$, $g^{12} = g^{21} = 0$, $g^{22} = 1$. Hence

$$\Gamma_{ij}^{1} = \frac{1}{2}g^{1m}\left(g_{im,j} + g_{mj,i} - g_{ij,m}\right) = \frac{1}{2\phi^{2}}\left(g_{i1,j} + g_{1j,i} - g_{ij,1}\right).$$

Hence

$$\begin{cases} \Gamma_{11}^{1} = \frac{1}{2\phi^{2}}g_{11,u} = 0; \\ \Gamma_{12}^{1} = \Gamma_{21}^{1} = \frac{1}{2\phi^{2}}\left(g_{11,v} + g_{12,u} - g_{12,u}\right) = \frac{\phi_{v}}{\phi}; \\ \Gamma_{22}^{1} = -\frac{1}{2\phi^{2}}g_{22,u} = 0 \\ 1 \end{cases}$$

$$\Gamma_{ij}^{2} = \frac{1}{2}g^{2m} \left(g_{im,j} + g_{mj,i} - g_{ij,m}\right) = \frac{1}{2} \left(g_{i2,j} + g_{2j,i} - g_{ij,2}\right).$$

$$\begin{cases} \Gamma_{11}^{2} = -\frac{1}{2}g_{11,2} = -\phi\phi_{v}; \\ \Gamma_{12}^{2} = \Gamma_{21}^{2} = 0 \\ \Gamma_{22}^{2} = -\frac{1}{2}g_{22,v} = 0 \end{cases}$$

Lemma 2. $\alpha(t) = \mathbf{X}(u(t), v(t))$ is a geodesic if and only if

$$\begin{cases} u'' + \frac{2\phi_v}{\phi} u'v' = 0, \\ v'' - \phi \phi_v (u')^2 = 0. \end{cases}$$

Corollary 1. Any meridian is a geodesic. A parallel $\mathbf{X}(u, v_0)$ is a geodesic if and only if $\phi_v(v_0) = 0$.

To study the behavior of general geodesics, first we have the following lemma:

Lemma 3. Let $a_1(t), a_2(t)$ be smooth functions on $(T_1, T_2) \subset \mathbb{R}$ such that $a_1^2 + a_2^2 = 1$. For any $t_0 \in (T_1, T_2)$ and θ_0 such that $a_1(t_0) = \cos \theta_0$, $a_2(t_0) = \sin \theta_0$, there exists unique a smooth function $\theta(t)$ with $\theta(t_0) = \theta_0$ such that $a_1(t) = \cos \theta(t)$ and $a_2(t) = \sin \theta(t)$.

Proof. (Sketch) Suppose θ satisfies the condition. Then $a'_1 = -\theta' \sin \theta$, $a'_2 = \theta' \cos \theta$. Hence $\theta' = a_1 a'_2 - a_2 a'_1$. From this we have uniqueness. To prove existence, fix $t_0 \in (T_1, T_2)$ and let θ_0 be such that $\cos \theta_0 =$

To prove existence, fix $t_0 \in (T_1, T_2)$ and let θ_0 be such that $\cos \theta_0 = a_1(0)$, $\sin \theta_0 = a_2(0)$. Let

$$\theta(t) = \theta_0 + \int_{t_0}^t (a_1 a_2' - a_2 a_1') d\tau$$

and let $b_1 = \cos \theta(t)$, $b_2 = \sin \theta(t)$. Let $f = (a_1 - b_1)^2 + (a_2 - b_2)^2$, then one can check that f' = 0. So θ is a smooth function and is a required function.

Now let $\alpha(s) = \mathbf{X}(u(s), v(s))$ be a geodesic on M parametrized by arc length. Let $\mathbf{e_1} = \mathbf{X}_u / |\mathbf{X}_u|$ and $\mathbf{e_2} = \mathbf{X}_v / |\mathbf{X}_v|$.

$$\alpha' = a_1 \mathbf{e_1} + a_2 \mathbf{e_2}.$$

By the lemma there exists smooth function $\theta(s)$ such that $a_1 = \sin \theta$, $a_2 = \theta$. Note that θ is the angle between α' and the meridian.

Proposition 1 (CLAIRAUT'S THEOREM). $r(s) \sin \theta(s)$ is constant along α , where r(s) is the distance of $\alpha(s)$ from the z-axis.

Proof. (Sketch) Denote the $\frac{d\alpha}{ds}$ by α' etc. Since $r(s) = \phi(v(s))$,

$$r' = \phi_v v'.$$

Also $\sin \theta = \langle \alpha', \mathbf{e_1} \rangle = u'\phi$, so $(\sin \theta)' = u''\phi + u'v'\phi_v.$
 $(r\sin \theta)' = \phi_v v'u'\phi + u''\phi + \phi_v u'v'$
 $= \phi \left(u'' + \frac{2\phi_v}{\phi}u'v' \right)$
 $= 0.$

Let us analyse a geodesic $\alpha(s)$, $0 \leq s < L \leq \infty$, on the surface of revolution parametrized by arc length. Assume α is not a parallel. Let us also assume that $\psi(v)$ is increasing. Let r(s) and $\theta(s)$ as the theorem. Let $\theta_0 = \theta(0)$. We may assume that $0 \leq \theta_0 \leq \frac{\pi}{2}$. By the theorem, $r(s)\sin\theta(s) = R$ for some constant $R \geq 0$. Note that $r(s) \geq R$.

- If R = 0, then α is a meridian.
- R > 0. Note $\cos^2 \theta = 1 \frac{R^2}{r^2}$. Then the geodesic will go up for all s, as long as r > R, i.e. the z coordinate of α is increasing in s. Either α does not come close to any parallel of radius R, and α will go up for all s, or α will be close to a parallel C of radius R. Let C be the first such parallel above α . Then we have the following cases:
 - (i) C is a geodesic. Then α will not meet C. (Why?) So α must come arbitrarily close to C without intersecting C.
 - (ii) $\alpha(s_0) \in C$ for some s_0 . At such a point $\theta(s_0) = \frac{\pi}{2}$. C is not a geodesic, so at this point $\phi_v \neq 0$, and so $\phi_v < 0$. (Why?) Hence the parallels just above C should have smaller radius. Hence α must bounce off from C and turn downward.

Assignment 9, Due Friday Nov 21, 2014

(1) Write down the differential equations for the geodesics on the torus:

$$\mathbf{X}(u,v) = \left((a + r\cos v)\cos u, (a + r\cos v)\sin u, r\sin v \right)$$

with a > r > 0. Also, show that if α is a geodesic start at a point on the topmost parallel $(a \cos u, a \sin u, r)$ and is tangent to this parallel, then α will stay in the region with $-\pi/2 \le v \le \pi/2$.

(2) Let α be a geodesic on a surface of revolution. Using the same notation as in the Clairuat's Theorem, suppose $r(s) \sin \theta(s) = R$

which is a positive constant. Prove that if α is not a parallel, then α will not intersect any parallel which is a geodesic and has radius R.

(3) Let $\mathbf{X} : U \to M$, $(u_1, u_2) \to \mathbf{X}(u_1, u_2)$, be a coordinate parametization, with U being an open set in \mathbb{R}^2 . Suppose the first fundamental form in this coordinate satisfies $g_{12} = 0$, and $g_{11} =$ $g_{22} = \exp(2f)$ for some smooth function f, i.e. $g_{ij} = \exp(2f)\delta_{ij}$, where $\delta_{ij} = 1$ if i = j and is zero if $i \neq j$. Show that the Christoffel symbols are

$$\Gamma_{ij}^k = \delta_{ki} f_j + \delta_{kj} f_i - \delta_{ij} f_k$$

where $f_i = \frac{\partial f}{\partial u_i}$ etc.

(4) With the same assumptions and notation as in the previous exercise. $\mathbf{e_1} = \mathbf{X}_1/|\mathbf{X}_1|$, $\mathbf{e_2} = \mathbf{X}_2/|\mathbf{X}_2|$, and $\mathbf{n} = \mathbf{e_1} \times \mathbf{e_2}$. Let $\alpha(s)$ be a geodesic on M such that $\alpha(s) = \mathbf{X}(u_1(s), u_2(s))$. Let $\theta(s)$ be a smooth function on s such that $\alpha'(s) = \mathbf{e_1}(s) \cos \theta(s) + \mathbf{e_2}(s) \sin \theta(s)$, where $\mathbf{e_i}(s) = \mathbf{e_i}(\alpha(s))$. Show that $\mathbf{a} := \mathbf{n} \times \alpha' = -\mathbf{e_1}(s) \sin \theta(s) + \mathbf{e_2}(s) \cos \theta(s)$. Show also that

$$k_g = -\langle \alpha', \mathbf{a}' \rangle$$

= $\exp(-2f) \langle \frac{d}{ds} \mathbf{X}_1, \mathbf{X}_2 \rangle + \theta'$
= $\left(-u' \frac{\partial f}{\partial v} + v' \frac{\partial f}{\partial u} \right) + \theta'.$

(Note that if f = 1, i.e. M is a plane, then $k_g = \theta'$.)