THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH5022 Theory of Partial Differential Equations, 2nd Term 2016-17

Homework 2 (Due: April 6th). Give answers to all questions and hand in your solutions directly to me in class on or before the due date.

Q1. Let $u \in W^{1,1}(\Omega)$, and suppose that there are constants $M > 0, 0 < \alpha \leq 1$ such that

$$\int_{B_R} |Du| \le M R^{n-1+\alpha} \quad \text{for any } B_R \subset \Omega.$$

Then $u \in C^{\alpha}(\Omega)$, and for any $B_R \subset \Omega$

$$\operatorname{Osc}_{B_R} u \le CMR^{\alpha},$$

where $C = C(n, \alpha) > 0$.

Hint: The result is due to Morrey. Compare it to Theorem 3.1 on page 48 of the textbook.

- **Q2.** Modify slightly the proof of Lemma 3.7 (Page 53 of the textbook) to show: Let f be a non-negative integrable function on \mathbb{R}^n , and let α be a positive constant. Then there exists a decomposition of \mathbb{R}^n so that
 - (i) $\mathbb{R}^n = F \cup \Omega, \ F \cap \Omega = \emptyset.$
 - (ii) $f(x) \leq \alpha$ a.e. on F.
 - (iii) Ω is the union of cubes, $\Omega = \bigcup_k Q_k$, where interiors are disjoint, and so that for each Q_k ,

$$\alpha < \frac{1}{|Q_k|} \int_{Q_k} f \le 2^n \alpha.$$

Hint: The result is a fundamental lemma by Calderon and Zygmund.

Q3. Let u be a weak solution to $-\Delta u = f$ in Ω , i.e.,

$$\int_{\Omega} D_i u D_i \varphi = \int_{\Omega} f \varphi \quad \text{for any } \varphi \in H^1_0(\Omega).$$

Find an example showing that $f \in C(\overline{\Omega})$, $u \in C^{1,\alpha}_{\text{loc}}(\Omega)$ for any $\alpha \in (0,1)$ while D^2u is not continuous in Ω . What if $f \in C^{\alpha}(\overline{\Omega})$ and Ω has a smooth boundary? Justify your answer in detail.

- Q4. Complete the proof of Theorem 4.13 (page 83 of the textbook) in detail.
- Q5. On page 90 of the textbook, it is written that the estimate on line 6:

$$\int |Dw|^2 \eta^2 \le \frac{C}{(1-\gamma)^{\alpha}} \int w^2 (|D\eta|^2 + \eta^2)$$

can be derived from the estimate on line 4:

$$\int_{B_1} |D\bar{u}|^2 \bar{u}^{-\beta-1} \eta^2 \le C \left\{ \frac{1}{\beta^2} \int_{B_1} |D\eta|^2 \bar{u}^{1-\beta} + \frac{1}{\beta} \int_{B_1} \frac{|f|}{k} \eta^2 \bar{u}^{1-\beta} \right\},$$

where $k = ||f||_{L^q} > 0$, but the details of the proof is omitted. Give reasons to fill the proof.

Hint: Apply Hölder with $\frac{1}{q} + \frac{q-1}{q} = 1$ to $\int_{B_1} \frac{|f|}{k} \eta^2 w^2$, interpolation to control $\|\eta w\|_{L^{2q/(q-1)}}$ by norms in L^{2^*} and L^2 , and then conclude the proof with Young's inequality with $\epsilon > 0$, Sobolev inequality $\dot{H}^1 \subset L^{2^*}$.