1 Normal cone

Let $C \subset \mathbb{R}^n$ be a convex set with $\overline{x} \in C$. The normal cone to C at \overline{x} is

$$
N(\overline{x}; C) := \{ v \in \mathbb{R}^n | \langle v, x - \overline{x} \rangle \le 0, \ \forall x \in C \}
$$

Proposition: Let $\overline{x} \in C$, where C is a convex subset of ⁿ. Then we have:

- 1. $N(\overline{x}; C)$ is a closed convex cone containing the origin.
- 2. If \overline{x} is a interior point, then $N(\overline{x}; C) = \{0\}.$

Consider a linear mapping $A : \mathbb{R}^n \to \mathbb{R}^p$. The *adjoint mapping* $A^* : \mathbb{R}^p \to$ \mathbb{R}^n is defined by

$$
\langle Ax, y \rangle = \langle x, A^*y \rangle, \ \forall x \in \mathbb{R}^n, \ y \in \mathbb{R}^p
$$

Proposition: Let $B : \mathbb{R}^n \to \mathbb{R}^p$ be defined by $B(x) = Ax + b$, where A is linear. Given $c \in \mathbb{R}$, consider

$$
C := \{ x \in \mathbb{R}^n | \; Bx = c \}
$$

For and $\overline{x} \in C$, we have

$$
N(\overline{x}; C) = \{ v \in \mathbb{R}^n | v = A^*y, y \in \mathbb{R}^p \} = \text{im}(A^*)
$$

Proof. Let $v \in N(\overline{x}; C)$. Let $u \in \text{ker}(A)$, then $A(\overline{x} - u) + b = A\overline{x} + b = c$. Hence $\langle v, u \rangle \geq 0$ for all $u \in \text{ker}(A)$. But $-u \in \text{ker}(A)$, so $\langle v, u \rangle = 0$ for all $u \in \text{ker}(A).$

Suppose there is no $y \in \mathbb{R}^p$ with $v = A^*y$. So $v \notin A^*(\mathbb{R}^p) := W$. Since W is nonempty, closed and convex, there exists a nonzero \bar{u} such that

$$
\sup\{\langle \overline{u},w\rangle \vert w\in W\} < \langle \overline{u},v\rangle.
$$

Since $0 \in W$, so $\langle \overline{u}, v \rangle > 0$.

Also $\langle \overline{u}, A^*(ty)\rangle < \langle \overline{u}, v\rangle$, $\forall t \in \mathbb{R}$, $\forall y \in \mathbb{R}^p$. Therefore $\langle \overline{u}, A^*y\rangle = 0$ (otherwise, we can choose t so that the above inequality doesn't hold).

Therefore, $\langle A\overline{u}, y\rangle = 0$ for all y. So $A\overline{u} = 0$. Hence $\overline{u} \in \text{ker}A$ and $\langle v, \overline{u}\rangle > 0$. This is a contradiction.

Therefore, $N(\overline{x}; C) \subset \text{im}(A^*).$

Conversely, suppose $v = A^*y$. For any $x \in C$, we have

$$
\langle v, x - \overline{x} \rangle = \langle A^* y, x - \overline{x} \rangle = \langle y, Ax - A \overline{x} \rangle = 0
$$

Hence $v \in N(\overline{x}; C)$.

 \Box