
1 ADMM

1.1 Dual ascent

Recall that if strong duality holds, then the primal optimal value is equal
to the dual optimal value, that is

f(x∗) = g(λ∗, µ∗)

where x∗ (λ∗, µ∗) are primal (dual) optimal solution.
In particular x∗ ∈ arg minL(x, λ∗, µ∗).

Consider the the problem

min f(x) subject to Ax = b

The Lagrangian is L(x, µ) = f(x) + 〈µ,Ax− b〉
The dual function is given by

g(µ) = inf
x
L(x, µ)

To maximize the dual function, we consider gradient ascent

µk+1 = µk + tk∇g(µk)

∇g(µ0) = ∇µ inf
x
L(x, µ0) = ∇µ inf

x
(f(x) + 〈µ0, Ax− b〉)

Suppose x+ = arg min(f(x) + 〈µ0, Ax− b〉), then

∇g(µ0) = ∇µ(f(x+) + 〈µ0, Ax+ − b〉) = Ax+ − b

We alternatively minimize L(x, µk), and then update µk. This leads to the
following algorithm:

xk+1 = arg min
x
L(x, µk)

µk+1 = µk + tk(Ax
k+1 − b)

Under some conditions (eg. f is strongly convex), this methods converges.
We can also generalize this to problems with inequality constraints.

Advantage: Decomposability
Disadvantage: Poor convergence properties

1

1.2 Augmented Lagrangian

Consider
min f(x) +

ρ

2
‖Ax− b‖2, subject to Ax = b

If ρ ≥ 0, this problem has the same set of solution as

min f(x) subject to Ax = b

This motivates the definition of the augmented Lagrangian, which is given
by

Lρ(x, µ) = f(x) +
ρ

2
‖Ax− b‖2 + 〈µ,Ax− b〉

We try to apply this to the dual ascent algorithm.
Recall the KKT conditions for the original problem are

Ax∗ = b, ∇f(x∗) +ATµ∗ = 0

Since xk+1 = arg minLρ(x, µ
k), we have

0 = ∇xLρ(xk+1, µk)

= ∇f(xk+1) +AT (µk + ρ(Axk+1 − b))

If we choose ρ as the step size for updating µ, then we have ∇f(xk+1) +
ATµk+1 = 0.
Hence we get the following algorithm, which is called method of multipliers,

xk+1 = arg min
x
Lρ(x, µ

k)

µk+1 = µk + ρ(Axk+1 − b)

Advantage: Better convergence properties
Disadvantage: Not decomposable

1.3 ADMM

Consider the problem

min
x,z

f(x) + g(z) subject to Ax+Bz = c

The augmented Lagrangian is given by

Lρ(x, z, µ) = f(x) + g(z) + 〈µ,Ax+Bz − c〉+
ρ

2
‖Ax+Bz − c‖2

2

Instead of minimizing Lρ over x, z jointly, we split the minimization into 2
parts. This is called the general ADMM algorithm, which is given by

xk+1 = arg min
x
Lρ(x, z

k, µk)

zk+1 = arg min
z
Lρ(x

k+1, z, µk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

We can also consider the scaled version of ADMM. Let ν = 1
ρµ, then

Lρ(x, z, µ) = f(x) + g(z) + 〈µ,Ax+Bz − c〉+
ρ

2
‖Ax+Bz − c‖2

= f(x) + g(z) +
ρ

2
‖Ax+Bz − c+ ν‖2 − ρ

2
‖ν‖2

Hence, we have the following scaled ADMM

xk+1 = arg min
x

(f(x) +
ρ

2
‖Ax+Bzk − c+ νk‖2)

zk+1 = arg min
z

(g(z) +
ρ

2
‖Axk+1 +Bz − c+ νk‖2)

νk+1 = νk +Axk+1 +Bzk+1 − c

We have good convergence properties for ADMM:
Assume f, g are closed,proper and convex and strong duality holds. Then:

1. Axk +Bzk − c→ 0.

2. f(xk) + g(z∗)→ p∗

3. µk → µ∗

1.4 Examples

Convex constraints
Consider

min
x∈C

f(x)

where C is a closed convex set.
We first transform the problem into ADMM form

min f(x) + g(z) subject to x− z = 0

3

where g is the indicator function of C
The z update is given by

zk+1 = arg min
z

(g(z) +
ρ

2
‖xk+1 − z + νk‖2) = PC(xk+1 + νk)

where PC(·) denotes the projection onto C.
Hence the ADMM iteration is give by

xk+1 = arg min
x
f(x) +

ρ

2
‖x− zk + νk‖2

zk+1 = PC(xk+1 + νk)

νk+1 = νk + xk+1 − zk+1

LASSO
Consider the l1-regularized least square problem:

min
x

1

2
‖Ax− b‖22 + λ‖x‖1

Again, we transform the problem into ADMM form

min
x,z

1

2
‖Ax− b‖22 + λ‖z‖1 subject to x− z = 0

We first consider the x update:

xk+1 = arg min
x

(
1

2
‖Ax− b‖22 +

ρ

2
‖x− zk + νk‖22)

This is equivalent to the least square problem

min
x

∥∥∥∥ [A√
ρI

]
x−

[
b√

ρ(zk − νk)

] ∥∥∥∥2
2

Hence

xk+1 = (ATA+ ρI)−1
[
AT
√
ρI
] [b√

ρ(zk − νk)

]
= (ATA+ ρI)−1(AT b+ ρ(zk − νk))

Now we consider the z update

zk+1 = arg min
z
λ‖z‖1 +

ρ

2
‖z − xk+1 − νk‖22

4

This problem is separable. Each component of zk+1 is given by

zk+1
i = arg min

y
λ|y|+ ρ

2
(y − xk+1

i − νki)2

We differentiate the objective function (let’s call it g(y))

g′(y) =

{
λ+ ρ(y − xk+1

i − νki) y > 0

−λ+ ρ(y − xk+1
i − νki) y < 0

If y∗ > 0, then y∗ = xk+1
i + νki − 1

ρλ, and this holds if xk+1
i + νki) > 1

ρλ.

If y∗ < 0, then y∗ = xk+1
i + νki + 1

ρλ, and this holds if xk+1
i + νki) < −1

ρλ.

Lastly, if |xk+1
i + νki)| ≤ 1

ρλ, then y∗ = 0.
We denote this by Sλ/ρ(·) (Soft-thresholding operator)
Hence

zk+1 = Sλ/ρ(x
k+1 + νk)

Therefore, the ADMM iteration for LASSO is given by

xk+1 = (ATA+ ρI)−1(AT b+ ρ(zk − νk))

zk+1 = Sλ/ρ(x
k+1 + νk)

νk+1 = νk + xk+1 − zk+1

5

