MATH 4030 Differential Geometry Homework 8

due 3/11/2015 (Tue) at 5PM

Problems

You can directly quote results from previous Homeworks. Einstein summation convention is used throughout the assignment.

1. Recall the *Poincaré upper half-plane* $\mathbb{R}^2_+ := \{(x, y) \in \mathbb{R}^2 : y > 0\}$ equipped with the metric

$$
(g_{ij}) = \frac{1}{y^2} \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right).
$$

Identify the upper half plane \mathbb{R}^2_+ with the upper half of the complex plane $\mathbb{C}_+ := \{z = x + iy \in \mathbb{R}^2\}$ $\mathbb{C}: y > 0$. Let $a, b, c, d \in \mathbb{R}$ be real constants such that $ad - bc > 0$. Let $L: \mathbb{C} \to \mathbb{C}$ be the linear fractional transformation defined by

$$
L(z) := \frac{az + b}{cz + d}.\tag{1}
$$

- (a) Show that L preserve the upper half plane, i.e. $L(\mathbb{R}^2_+) = \mathbb{R}^2_+$.
- (b) Prove that L is an isometry on (\mathbb{R}^2_+, g) , i.e. for any $p \in \mathbb{R}^2_+$ and any $v, w \in T_p \mathbb{R}^2_+$,

$$
g_{L(p)}(dL_p(v), dL_p(w)) = g_p(v, w).
$$

2. (do Carmo P.260 Q.4) Let $c(t)$ be a curve on a regular parametrized surface. Suppose $X(t)$, $Y(t)$ are two tangential vector fields defined along the curve c. Prove that

$$
\frac{d}{dt}g(X(t),Y(t))=g(\nabla_{c'(t)}X(t),Y(t))+g(X(t),\nabla_{c'(t)}Y(t)).
$$

Using this result, prove that the angle between two parallel vector fields X, Y along a curve is always constant.

- 3. (do Carmo P. 261 Q.8) Show that if all the geodesics of a connected surface (embedded submanifold) are plane curves, then the surface is contained in a plane or a sphere.
- 4. (do Carmo P.261 Q.9) Consider two meridians of a sphere C_1 and C_2 which make an angle φ at the point p_1 . Take the parallel transport of the tangent vector w_0 of C_1 along C_1 and C_2 , from the initial point p_1 to the point p_2 where the two meridians meet again, obtaining respectively, w_1 and w_2 . Compute the angle from w_1 to w_2 .

- 5. (do Carmo P. 262 Q.15) Let p_0 be a pole of a unit sphere \mathbb{S}^2 and q,r be two points on the corresponding equator in such a way that the meridians p_0q and p_0r make an angle θ at p_0 . Consider a unit vector v tangent to the meridian p_0q at p_0 , and take the parallel transport of v along the closed curve made up by the meridian p_0q , the parallel qr, and the meridian rp₀ (Fig. 4-21).
	- (a) Determine the angle of the final position of v with v .
	- (b) Do the same thing when the points r, q instead of being on the equator are taken on a parallel of colatitude φ . (Note that the notation here is different from that used in our lectures $(\varphi, \theta) \leftrightarrow (\theta, \varphi)$.

Suggested Exercises

- 1. Let $\{e_1, e_2\}$ be the standard basis of \mathbb{R}^2 .
	- (a) Expand the tensor product $(3e_1 + 2e_2) \otimes (-e_1 + 4e_2)$.
	- (b) Calculate $(3e_1 + 2e_2) \wedge (-e_1 + 4e_2)$.
	- (c) Can you rewrite the tensor product $e_1 \otimes e_2 + e_2 \otimes e_1$ as $v \otimes w$ for some $v, w \in \mathbb{R}^2$?
	- (d) Prove that $v \wedge w = \det(v, w)e_1 \wedge e_2$.
	- (e) Compute the contraction $\iota_v(\eta \wedge \varphi)$ where $v = -2e_1 + e_2$, $\eta = 3e_1^* 4e_2^*$ and $\varphi = e_1^* + 7e_2^*$. Here $\{e_1^*, e_2^*\}$ is the dual basis of $\{e_1, e_2\}.$
- 2. Consider the following vector field $X : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2$ defined by

$$
X(x, y) := \left(\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}\right) =: (F, G).
$$

- (a) Show that $\frac{\partial F}{\partial y} = \frac{\partial G}{\partial x}$ on $\mathbb{R}^2 \setminus \{0\}.$
- (b) Prove that $X \neq \nabla f$ for any smooth function $f : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$.