MATH 4030 Differential Geometry Homework 3

due 29/9/2015 (Tue) at 5PM

Problems

- 1. (do Carmo Sec. 1-7 Q.2) Let \overline{AB} be the line segment joining two points A, B on the plane \mathbb{R}^2 and let $\ell > \text{length of } \overline{AB}$. Show that the curve C joining A and B, with length ℓ , and such that together with \overline{AB} bounds the largest possible area is an arc of a circle passing through A and B (Fig 1-35). (For simplicity, you may assume that C always lies on one side of the unique line passing through A and B.)
- 2. (do Carmo Sec. 1-7 Q.4) Let C be a plane curve and let T be the tangent line at a point $p \in C$. Draw a line L parallel to the normal line at p and at a distance d of p (Fig. 1-36). Let h be the length of the segment determined on L by C and T (thus, h is the "height" of C relative to T). Prove that

$$|\kappa(p)| = \lim_{d \to 0} \frac{2h}{d^2},$$

where $\kappa(p)$ is the curvature of C at p.

- 3. (do Carmo Sec. 1-7 Q.5) If a closed plane curve C is contained inside a disk of radius r, prove that there exists a point $p \in C$ such that the curvature $\kappa(p)$ of C at p satisfies $|\kappa(p)| \ge 1/r$.
- 4. (do Carmo Sec. 1-7 Q.6) Let $c(s), s \in [0, \ell]$ be a positively oriented closed convex regular plane curve parametrized by arc length. Let $\{e_1(s), e_2(s)\}$ be the Frenet frame of c(s). The curve

$$\tilde{c}(s) := c(s) - re_2(s),$$

where r > 0 is a constant, is called a *parallel curve* to c. Show that

- (a) Length $(\tilde{c}) = \text{Length } (c) + 2\pi r.$
- (b) Area $(\tilde{\Omega}) = \text{Area}(\Omega) + r\ell + \pi r^2$, where $\Omega, \tilde{\Omega}$ are the regions bounded by c and \tilde{c} respectively.
- (c) $\tilde{\kappa}(s) = \kappa(s)/(1 + r\kappa(s))$ where κ , $\tilde{\kappa}$ are the curvatures of c and \tilde{c} respectively.

- 5. (do Carmo Sec. 1-7 Q.13) Let C be an oriented plane closed curve with curvature $\kappa > 0$ everywhere. Assume that C has at least one point p of self intersection (Fig. 1-41). Prove that
 - (a) There is a point $p' \in C$ such that the tangent line T' at p' is parallel to some tangent at p.
 - (b) The rotation angle of the tangent in the positive arc of C made up by pp'p is $> \pi$.
 - (c) The rotation index of C is ≥ 2 .

Figure 1-41