MATH 4030 Differential Geometry Homework 11

due 26/11/2015 (Thur) at 5PM

Problems

You can directly quote results from previous Homeworks.

- 1. (do Carmo P.282 Q.1) Let $\Sigma \subset \mathbb{R}^3$ be a closed orientable surface which is not homeomorphic to a sphere. Prove that there are points on Σ where the Gauss curvature K is positive, negative and zero respectively.
- 2. (do Carmo P.282 Q.2) Let T be a torus of revolution which can be parametrized (except along two curves) by

$$f(u,v) = ((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u), \qquad 0 < u < 2\pi, 0 < v < 2\pi.$$

Prove by an explicit calculation that

$$\iint_T K \, dA = 0$$

Compute the Euler characteristic $\chi(T)$ for a torus by giving an explicit triangulation. Does the above result agree with the Gauss-Bonnet theorem?

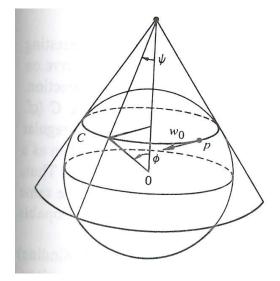
- 3. (do Carmo P.282 Q.3) Let $\Sigma \subset \mathbb{R}^3$ be a closed orientable surface homeomorphic to a sphere and such that K > 0 everywhere. Let $\gamma \subset \Sigma$ be a simple closed geodesic in Σ and that $\Sigma \setminus \gamma = A \cup B$. Let $\nu : \Sigma \to \mathbb{S}^2$ be the Gauss map of Σ . Show that the images $\nu(A)$ and $\nu(B)$ in \mathbb{S}^2 have the same area.
- 4. (do Carmo P.282 Q.4) Compute the Euler characteristic of (a) an ellipsoid, (b) the surface $S := \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^{10} + z^6 = 1\}.$

Suggested Exercises

1. (do Carmo P.282 Q.5) Let C be a parallel of colatitude φ on an oriented unit sphere \mathbb{S}^2 , and let w_0 be a unit vector tangent to C at a point $p \notin C$. Take the parallel transport of w_0 along C and how that its position, after a complete turn, makes an angle $\Delta \varphi = 2\pi (1 - \cos \varphi)$ with the initial position w_0 . Check that

$$\lim_{R \to p} \frac{\Delta \varphi}{A} = 1 = K_{\mathbb{S}^2},$$

where A is the area of the region R of \mathbb{S}^2 bounded by C.



2. (Kühnel Ch.5 Q.9) Let (U, g) be an abstract Riemannian surface and let $\Delta \subset U$ be a geodesic triangle which is the boundary of a simply connected domain. Show that the parallel translation along this boundary (traced through once) is a rotation in the tangent plane. Calculate the angle of rotation in terms of quantities which only depend on the interior of Δ .