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Elementary tensor calculus

We will study in this section some basic multilinear algebra and operations on tensors.

Let V be an n-dimensional vector space over R. From linear algebra we know that the space of all
linear functionals on V forms a vector space itself, called the dual of V , i.e.

V ∗ = Hom(V ;R) = {f : V → R linear}.

Elements of V are called vectors while elements of V ∗ are called covectors. If {e1, e2, · · · , en} is a basis
for V , then there is a corresponding dual basis {e∗1, e∗2, · · · , e∗n} for V ∗ defined by the relationship

e∗i (ej) = δij =

{
1 when i = j,
0 when i 6= j.

Any v ∈ V can be written uniquely as a linear combination v = a1e1 + · · ·+anen, and it can be written
as a column vector :

v =


a1

a2
...
an

 .

On the other hand, any covector v∗ ∈ V can be written uniquely as v∗ = α1e
∗
1 + · · ·+ αne

∗
n. It can be

expressed as a row vector :
v∗ =

(
α1 α2 · · · αn

)
.

The vector space V and its dual V ∗ have a natural (non-degenerate) pairing between them:

v∗(v) =
(
α1 α2 · · · αn

)


a1

a2
...
an

 = α1a1 + α2a2 + · · ·+ αnan.

One important thing we learned from linear algebra is that although V and V ∗ are isomorphic vector
spaces, they are not canonically isomorphic. In other words, there is no default isomorphism between
V and V ∗. Another example of this kind is that any n-dimensional real vector space V is isomorphic to
Rn by taking a basis. However, the isomorphism V ∼= Rn depends on the choice of the basis. To obtain
a canonical isomorphism between V and V ∗, one needs extra structure. For example, if (V, 〈·, ·〉) is an
inner product space, then the linear map ] : V −→ V ∗ defined by

v 7→ v] := 〈v, ·〉
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is an isomorphism which is independent of the choice of a basis (but depends on the inner product

〈·, ·〉). Note that if {e1, · · · , en} is an orthonormal basis for (V, 〈·, ·〉), then {e]1, · · · , e
]
n} is the dual basis

for V ∗. One also induces an inner product on V ∗ by requiring that ] preserves their inner products.

Now, we define the tensor product of two real vector spaces V and W (not necessarily of the same
dimension). The tensor product V ⊗W is the set of all formal linear combinations of v⊗w, v ∈ V and
w ∈W , with an equivalence relation ∼ identifying elements through a bilinear relation:

V ⊗W = span{v ⊗ w : v ∈ V,w ∈W}/ ∼,

where for any c1, c2 ∈ R,

(c1v1 + c2v2)⊗ w = c1(v1 ⊗ w) + c2(v2 ⊗ w),

v ⊗ (c1w1 + c2w2) = c1(v ⊗ w1) + c2(v ⊗ w2).

By convention, we set V ⊗0 = R. It is trivial that V ⊗1 = V . To see what V ⊗2 is, if we take a basis
{e1, · · · , en}, then we can write v =

∑n
i=1 aiei, w =

∑n
j=1 bjej , using the bilinear relations:

v ⊗ w =

(
n∑
i=1

aiei

)
⊗

 n∑
j=1

bjej

 =

n∑
i,j=1

aibj(ei ⊗ ej).

For example, (e1 + e2)⊗ (e1 − e2) = e1 ⊗ e1 + e2 ⊗ e1 − e1 ⊗ e2 − e2 ⊗ e2. Note that e1 ⊗ e2 6= e2 ⊗ e1.
In general, if {e1, · · · , en} and {f1, · · · , fm} are bases for V and W respectively, then {ei ⊗ fj} forms
a basis for V ⊗W . One can define higher tensor powers V ⊗k similarly. On the other hand, we have

V ∗ ⊗W ∼= Hom(V,W ).

One can identify an element v∗ ⊗ w ∈ V ∗ ⊗W with a linear map V →W by

(v∗ ⊗ w)(v) := v∗(v)w,

and then extend to the rest of V ∗⊗W by linearity. (Exercise: Show that this is indeed an isomorphism.)

Next, we define another operator called the wedge product ∧. It shares similar multilinear properties
but has the extra characteristic of being anti-symmetric. Let V be a real vector space as before. We
define the k-th wedge product of V to be

ΛkV = span{v1 ∧ v2 ∧ · · · ∧ vk : vi ∈ V }/ ∼,

where for any constant c ∈ R,

v1 ∧ · · · ∧ (cvi + w) ∧ · · · ∧ vk = c(v1 ∧ · · · ∧ vi ∧ · · · ∧ vk) + (v1 ∧ · · · ∧ w ∧ · · · ∧ vk),

v1 ∧ · · · ∧ vi ∧ vi+1 ∧ · · · ∧ vk = −v1 ∧ · · · ∧ vi+1 ∧ vi ∧ · · · ∧ vk.
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These two properties imply that the wedge product is linear in each variable and that v1 ∧ · · · ∧ vk = 0
whenever vi = vj for some i 6= j. If {e1, · · · , en} is a basis for V , then it is easy to see that

{ei1 ∧ · · · ∧ eik : 1 ≤ i1 < i2 < · · · < ik ≤ n}

forms a basis for ΛkV . Hence, dim ΛkV =
(
n
k

)
where n =dimV .

By convention, Λ0V = R. Also, Λ1V = V . For higher wedge products, for example, when V = R2

with standard basis {e1, e2}, then Λ2V = span{e1 ∧ e2} and ΛkV = 0 for all k ≥ 3. When V = R3, we
have

Λ1V = span{e1, e2, e3},

Λ2V = span{e1 ∧ e2, e1 ∧ e3, e2 ∧ e3},

Λ3V = span{e1 ∧ e2 ∧ e3}.

Note that ΛkV = 0 whenever k >dimV (Exercise: Prove this.)

The anti-symmetric property of wedge product is related to the determinant function when k =dimV .

Proposition 1. Let {e1, · · · , en} be a basis for V . For any vi =
∑n

i,j=1 aijej for i = 1, · · · , n, we have

v1 ∧ · · · ∧ vn = det(aij) e1 ∧ · · · ∧ en.

Proof. Exercise to the reader.

One can define the wedge product ΛkV ∗ for the dual space V ∗, and in fact we have a canonical
isomorphism ΛkV ∗ ∼= (ΛkV )∗ defined by

(f1 ∧ · · · ∧ fn)(v1 ∧ · · · ∧ vn) = det

 f1(v1) · · · f1(vn)
...

. . .
...

fn(v1) · · · fn(vn)

 ,

and extending to all the elements of ΛkV and ΛkV ∗ by linearity. For example,

(
(

2 3
)
∧
(
−1 2

)
)

((
1
0

)
∧
(
−1
1

))
= det

(
2 1
−1 3

)
= 7.

An orientation of V is a choice of [η] where 0 6= η ∈ ΛnV ∗ and η ∼ cη for c > 0. For example,
the standard orientation on Rn is given by [e∗1 ∧ e∗2 ∧ · · · ∧ e∗n]. Note that since ΛnV ∗ ∼= R, so there
are only two distinct orientations on V . An ordered basis {v1, · · · , vn} for V is said to be positive if
η(v1 ∧ · · · ∧ vn) > 0. For example, if we take the standard orientation η = e∗1 ∧ e∗2 of R2, then the
ordered basis {e1, e2} is positive while {e2, e1} is negative.

Another useful operation is called contraction. Let v ∈ V and ω ∈ ΛkV ∗, then the contraction of ω
with v, denoted by ιvω ∈ Λk−1V ∗ is defined by

(ιvω)(v1 ∧ · · · ∧ vk−1) = ω(v ∧ v1 ∧ · · · ∧ vk−1).
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we have the following explicit formula for contraction:

ιv(v
∗
1 ∧ · · · ∧ v∗k) =

k∑
`=1

(−1)`−1v∗` (v)(v∗1 ∧ · · · ∧ v̂∗` ∧ · · · ∧ v∗k).

For example, if v = ae1 + be2, then ιv(e
∗
1 ∧ e∗2) = ae∗2 − be∗1. Hence, if we fix v ∈ V , then we have a

sequence of contractions which reduces the degree of the wedge products:

0
ιv←− Λ0V ∗

ιv←− Λ1V ∗
ιv←− · · · ιv←− ΛnV ∗.

Differential Forms in Rn

In this section we introduce the language of differential forms in Rn. Let U be an open domain in
Rn equipped with the standard Euclidean metric 〈·, ·〉. The tangent space at each p ∈ U is denoted by
TpU , which is an n-dimensional real vector space. Note that TpU is equipped with the inner product
〈·, ·〉 so (TpU, 〈·, ·〉) is in fact an inner product space. The tangent bundle is simply the disjoint union
of all these tangent spaces:

TU :=
∐
p∈U

TpU ' U × Rn.

If we denote the standard coordinates on Rn by x1, · · · , xn, then we obtain an orthonormal basis
{ ∂
∂xi

∣∣
p
, · · · , ∂

∂xn

∣∣
p
} of TpU . Because of this standard basis globally defined on U , we have a “canonical”

identification of TU with U × Rn once a coordinate system is fixed. A vector field X on U is just

X =

n∑
i=1

fi
∂

∂xi
,

where fi : U → R are smooth functions,

Now, for each tangent space TpU , we can take the dual vector space T ∗pU , which is called the
cotangent space at p. As for the tangent bundle TU , we can put all the cotangent spaces together to
form the cotangent bundle:

T ∗U =
∐
p∈U

T ∗pU ' U × Rn.

We will denote the dual basis of { ∂
∂xi

∣∣
p
, · · · , ∂

∂xn

∣∣
p
} in T ∗pU as {dx1|p, · · · dxn|p}. We can take the `-th

wedge product of the cotangent spaces at each point as in the previous section and then put them
all together to get the bundle Λ`T ∗U . A differential `-form is just a section of Λ`T ∗U which can be
expressed as

ω =
∑

1≤i1<···<i`≤n
fi1···i`dx

i1 ∧ · · · ∧ dxik ,

for some smooth functions fi1···i` : U → R.
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For example, a 0-form is simply a smooth function f : U → R. When n = 2, the 1-forms have the
form

ω = f(x1, x2)dx1 + g(x1, x2)dx2,

and a 2-form would have the form
ω = f(x1, x2)dx1 ∧ dx2.

We will use Ω`(U) to denote the space of all `-forms on U . Note that by the properties of wedge
product, we have Ω`(U) = 0 whenever Ω ⊂ Rn with ` > n. The top form dx1 ∧ · · · ∧ dxn is called the
volume form of Rn, and we can integrate n-form on an n-dimensional domain U ⊂ Rn by∫

U
f(x) dx1 ∧ · · · ∧ dxn :=

∫
U
f(x) dx1 · · · dxn,

whenever f is (Lebesgue) integrable on U ⊂ Rn.

The power of the differential forms rests on the fact that we can do calculus on forms, i.e. we can
differentiate and integrate forms. We have already seen how to integrate a top degree form above using
the ordinary Lebesgue integral. We now discuss how to differentiate differential forms.

We will define an operation called the exterior derivative d : Ω`(U)→ Ω`+1(U) for ` = 0, 1, 2, 3, · · ·
which satisfies all the properties below:

(i) d is linear.

(ii) df =
∑n

i=1
∂f
∂xi
dxi for functions f ∈ Ω0(U).

(iii) d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη where ω ∈ Ωp(U) and η ∈ Ω`(U).

It is clear that the three properties above uniquely define the exterior derivative d. For example,

d

 ∑
I=(i1,··· ,i`)

fI(x) dxi1 ∧ · · · ∧ dxi`

 =
∑

I=(i1,··· ,i`)

dfI ∧ dxi1 ∧ · · · ∧ dxi` .

For example, when n = 2, we have

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2.

Therefore, df is equivalent to the vector field grad(f) (under the dual pairing). On the other hand, the
derivative of a 1-form is given by

d(fdx1 + gdx2) = df ∧ dx1 + dg ∧ dx2 =

(
∂g

∂x1
− ∂f

∂x2

)
dx1 ∧ dx2.

Note that the coefficient on the right hand side is just the rotation rot(X) of the vector field X = (f, g)
in R2 which appears in Green’s theorem. The reader is encourage to try out the case for n = 3 and see
how it’s related to the curl and div of vector fields in R3.

5



Theorem 2. d2 = d ◦ d = 0.

Proof. For f ∈ Ω0(U), we see that

d2f = d

(
n∑
i=1

∂f

∂xi
dxi

)
=

n∑
i,j=1

(
∂2f

∂xj∂xi

)
dxj ∧ dxi =

∑
1≤i<j≤n

(
∂2f

∂xi∂xj
− ∂2f

∂xj∂xi

)
dxi ∧ dxj = 0

since mixed partial derivatives are equal. That d2 = 0 for general `-forms follows similarly and is left
as an exercise for the reader.

The most important theorem on the calculus of forms is the fundamental theorem of calculus, which
is called the generalized Stokes’ Theorem.

Theorem 3 (Stokes’ Theorem). Let U ⊂ Rn be a bounded smooth domain with boundary ∂U . Suppose
ω ∈ Ωn−1(U), then we have ∫

U
dω =

∫
∂U
ω.

Moving frames on Surfaces

Now, we proceed to define differential forms on surfaces and use the idea of moving frames to
prove the Gauss-Bonnet theorem in the next section. Since everything here is local, we can take a
parametrized surface f : U → R3 where U ⊂ R2 is a smooth bounded domain.

Suppose we have an orthonormal frame {X1, X2, X3} depending smoothly on u ∈ U such that
X1, X2 ∈ Tuf and X3 ∈ Nuf . Therefore, X3 = ν is simply the unit normal to the surface while X1

and X2 are tangent to the surface. Note that in general we cannot take X1 = ∂f
∂u1

and X2 = ∂f
∂u2

as
they cannot form an orthonormal basis everywhere unless the surface is flat. One way to obtain such
a moving frame is that we can take

X1 :=
∂f
∂u1

‖ ∂f
∂u1
‖
, X2 := ν ×X1, X3 := ν.

It is easy to see that these give a moving orthonormal frame adapted to the surface. As in the study
of curves using Frenet frames, we can read off the geometry by studying how the orthonormal frame
changes along the surface. Unlike the case of curves which are only 1-dimensional, we need to examine
the change of the moving frame along different tangential directions on the surface. Hence differential
forms are helpful here since they require certain number of tangential vectors as input. Consider a
tangential vector field Y along the surface, if we differentiate the vector field Xj along Y , then since
{X1, X2, X3} is a basis, one can express DYXj in terms of this basis whose coefficients of course depends
on the point on the surface AND the tangential vector field Y :

DYXj =

3∑
i=1

ωij(Y )Xi.
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Recall that the directional derivative DYX is tensorial in the Y -variable, therefore the coefficients ωij
in fact defines a 1-form (i.e. a (0, 1)-tensor) on U .

Definition 4. The connection 1-forms ωij associated to an orthonormal frame {X1, X2, X3} along a
surface is defined by the relation:

DXj =
3∑
i=1

ωij Xi, j = 1, 2, 3.

One can regard the ωij as a matrix of 1-forms or a matrix-valued 1-form. We will see shortly that the
components of the matrix gives information about the covariant derivatives and second fundamental
form along the surface.

Lemma 5. (i) The matrix (ωij) is skew-symmetric, i.e. ωij = −ωji .

(ii) For i, j = 1, 2, ωij(Y ) = 〈∇YXj , Xi〉, where ∇ is the covariant derivative and Y is any tangential
vector field.

(iii) For i = 1, 2, ωi3 = ιXih, where h is the second fundamental form as a (0, 2)-tensor and ι is the
contraction map, i.e. ιXih(Y ) := h(Xi, Y ).

Proof. For (i), we need to show that ωij(Y ) = −ωji (Y ) for any tangential vector field Y . Since
{X1, X2, X3} is an orthonormal frame everywhere, using the metric compatibility of D, we have

0 = DY 〈Xi, Xj〉 = 〈DYXi, Xj〉+ 〈Xi, DYXj〉 = ωji (Y ) + ωij(Y ),

which gives the desired conclusion. (ii) is from definition since ∇YX = (DYX)T and X1, X2 are
tangential vectors. For (iii), since X3 = ν, using the definition of the second fundamental form h,

ωi3(Y ) = 〈DY ν,Xi〉 = h(Y,Xi) = h(Xi, Y ) = ιXih(Y ).

Therefore, we have the matrix of 1-forms

ω =

 ω1
1 ω1

2 ω1
3

ω2
1 ω2

2 ω2
3

ω3
1 ω3

2 ω3
3

 =

 0 −ω2
1 −ιX1h

ω2
1 0 −ιX2h

ιX1h ιX2h 0

 .

.

With these connection 1-forms ωij one can write the Gauss and Codazzi equations in the following
form:
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Theorem 6 (Maurer-Cartan structural equations). We have for i, j = 1, 2, 3,

dωij +

3∑
k=1

ωik ∧ ωkj = 0.

Proof. Since D is just the usual directional derivative in R3, we can write

dXj =
3∑
i=1

ωij Xi,

where the left hand side means that we are taking the exterior derivative of each of the components of
Xj as a vector in R3. Taking d on both sides again and using the fact that d2 = 0, we have

0 = d2Xj =

3∑
j=1

(
dωij +

3∑
k=1

ωik ∧ ωkj

)
Xi,

where we have used the Leibniz rule for differential forms ω ∈ Ωp(Rn) and η ∈ Ωq(Rn),

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη.

For our convenience, we also denote the intrinsic connection 1-forms corresponding to the covariant
derivative ∇ on the surface by

A =

(
A1

1 A1
2

A2
1 A2

2

)
=

(
0 ω1

2

ω2
1 0

)
.

Recall that the intrinsic Riemann curvature tensor R is defined as

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

for any tangential vector fields X,Y, Z. Therefore, if X,Y are fixed we can regard R(X,Y ) as a linear
operator on TΣ defined by Z 7→ R(X,Y )Z. Hence, we can define curvatures as a matrix-valued 2-forms
as below:

Definition 7. The curvature 2-forms Ωi
j associated with an orthonormal frame {X1, X2, X3} along a

surface are defined by the relation:

R(X,Y )Xj =

2∑
i=1

Ωi
j(X,Y )Xi.

We have the following useful formula of the curvature 2-forms in terms of the connection 1-forms.
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Theorem 8. Ω = dA+A ∧A.

Proof. Recall the Gauss equation in covariant form implies

〈R(X,Y )Z,W 〉 = h(Y,Z)h(X,W )− h(X,Z)h(Y,W ).

Therefore, using the Gauss equation and Lemma 5 (iii):

〈R(X,Y )Xj , Xk〉 = h(Y,Xj)h(X,Xk)− h(X,Xj)h(Y,Xk) = ω3
j (Y )ω3

k(X)− ω3
j (X)ω3

k(Y ).

Since for any 1-forms ω, η, we have (Exercise: check this!)

(ω ∧ η)(X,Y ) = ω(X)η(Y )− η(X)ω(Y ).

Using the definition of curvature 2-forms and Lemma 5 (i),

Ωk
j (X,Y ) = (ω3

k ∧ ω3
j )(X,Y ) = −(ωk3 ∧ ω3

j )(X,Y ).

Using the Maurer-Cartan structural equations, we have

Ωk
j (X,Y ) =

(
dωkj +

2∑
i=1

ωki ∧ ωij

)
(X,Y ).

By the definition of A, this implies Ω = dA+A ∧A.

Finally, we use the formula above to relate our discussion to the intrinsic Gauss curvature.

Lemma 9. Ω1
2 = dA1

2 = K dA where dA is the area 2-form of the surface.

Proof. Recall that the Gauss curvature (or sectional curvature in general) for the 2-plane spanned by
an orthonormal basis {X1, X2} is given by

K = 〈R(X1, X2)X2, X1〉 = Ω1
2(X1, X2).

This implies that Ω1
2 = KdA. The equality Ω1

2 = dA1
2 following from Theorem 8 and that

A ∧A =

(
0 A1

2

−A1
2 0

)
∧
(

0 A1
2

−A1
2 0

)
=

(
−A1

2 ∧A1
2 0

0 −A1
2 ∧A1

2

)
= 0

since ω ∧ ω = 0 for any 1-forms ω.

Proof of Gauss-Bonnet Theorem
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We are now ready to prove the smooth local Gauss-Bonnet Theorem, which says that for any surface
Σ ⊂ R3 with smooth boundary ∂Σ and that Σ is diffeomorphic to a disk, we have∫

Σ
K dA+

∫
∂Σ
kg ds = 2π.

Our proof here would be very similar to the proof the Theorem of Turning Tangents which says
that for any simple closed curve γ ⊂ R2, oriented positively, we have∫

γ
κ ds = 2π.

Note that the local Gauss-Bonnet Theorem reduces to this formula when the surface Σ is flat. Let us
first recall how we proved the Theorem of Turning Tangents. Let {e1, e2} be the Frenet frame of the
plane curve γ. The key idea is that we can define a continuous polar angle function ϕ (up to multiples
of 2π) by measuring the angle from the positive x-axis to the unit tangent vector e1. Therefore, we
have

e1 = cosϕ
∂

∂x
+ sinϕ

∂

∂y
, e2 = − sinϕ

∂

∂x
+ cosϕ

∂

∂y
.

By the definition of curvature κ := 〈e′1, e2〉 (we have parametrized the curve γ by arc length and ′

means d
ds here), we have

κ = 〈e′1, e2〉 =
dϕ

ds
.

Integrating both sides and using a homotopy argument, one proves that∫
γ
κ ds =

∫ L

0

dϕ

ds
ds = ϕ(L)− ϕ(0) = 2π.

The proof of the local Gauss-Bonnet formula will be very similar to the arguments above. Except
that we do not have a canonical global orthonormal frame { ∂∂x ,

∂
∂y} for plane curves. However, we can

always set up (locally) an orthonormal frame {X1, X2} along the surface as before. If the boundary
∂Σ is parametrized by arc length with e1 = d

ds and e2 = ν × e1 be the inward unit normal to ∂Σ which
is tangent to the surface Σ. Then, we can write

e1 = (cosϕ)X1 + (sinϕ)X2, e2 = −(sinϕ)X1 + (cosϕ)X2.

In other words, e1 makes an angle ϕ from X1 measured in the intrinsic metric (gij) on the surface.
Recall that the geodesic curvature kg := 〈∇e1e1, e2〉. Using the metric compatibility and that e1 and
e2 are orthogonal by definition, we have

kg = 〈∇e1e1, e2〉 =
d

ds
〈e1, e2〉 − 〈e1,∇e1e2〉 = −〈e1,∇e1e2〉.

Using the expression of e1, e2 in terms of X1, X2, we get

∇e1e2 = −dϕ
ds
e1 − (sinϕ)∇e1X1 + (cosϕ)∇e1X2.
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Using the definition of the connection forms Aij and that A1
2 = −A2

1, we have

−〈e1,∇e1e2〉 =
dϕ

ds
−A1

2(e1).

Therefore, putting all these together, we obtain

dϕ

ds
= kg +A1

2(e1).

Integrating on both side along ∂Σ, using Stokes’ Theorem and Lemma 9, we have

2π =

∫ L

0

dϕ

ds
ds =

∫
∂Σ
kg ds+

∫
∂Σ
A1

2 =

∫
∂Σ
kg ds+

∫
Σ
dA1

2 =

∫
∂Σ
kg ds+

∫
Σ
K dA.

This proves the Gauss-Bonnet theorem as wished. (Note that the integral on the left hand side is 2π
because we can define the polar angle ϕt with respect to the interpolating metric gt = (1 − t)δ + tg
where δ is the Euclidean metric on U and g is the first fundamental form of Σ. Since the integral
is always an integer multiple of 2π and that it should depend continuously with respect to t. As the
integral is 2π for the Euclidean metric g0 by the Theorem of Turning Tangents, it is also true for g1 = g
by this continuity argument.)
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