MATH 4030 Differential Geometry Homework 8

due 8/11/2015 (Tue) at 5PM

Problems

(to be handed in)

Unless otherwise stated, we use U, O to denote connected open subsets of \mathbb{R}^n . The symbols $S, \tilde{S}, S_1, S_2, S_3$ always denote surfaces in \mathbb{R}^3 . Recall that a *critical point* of a smooth function $f : S \to \mathbb{R}$ is a point $p \in S$ such that $df_p = 0$.

- 1. Let $f: S_1 \to S_2$ be an isometry between two compact surfaces S_1, S_2 in \mathbb{R}^3 . Show that S_1 and S_2 have the same area. (You can assume that S_2 is covered by a single parametrization except a set of measure zero.)
- 2. Let $S_1 = \{z = 0\}$ be the *xy*-plane and $S_2 = \{x^2 + y^2 = 1\}$ be the right unit cylinder. Show that the map $f: S_1 \to S_2$ defined by $f(x, y, 0) = (\cos x, \sin x, y)$ is a local isometry.
- 3. Suppose $X: U \to V \subset S$ and $\tilde{X}: U \to \tilde{V} \subset \tilde{S}$ are parametrizations of two surfaces S, \tilde{S} in \mathbb{R}^3 such that their first fundamental forms are the same, i.e. for i, j = 1, 2,

$$g_{ij} = \langle \frac{\partial X}{\partial u_i}, \frac{\partial X}{\partial u_j} \rangle = \langle \frac{\partial X}{\partial u_i}, \frac{\partial X}{\partial u_j} \rangle = \tilde{g}_{ij} \quad \text{on } U$$

Show that V is isometric to \tilde{V} .

4. Find a local isometry $f: S_1 \to S_2$ from the upper half plane $S_1 = \{z = 0, y > 0\}$ to the cone $S_2 := \{x^2 + y^2 = z^2, z > 0\}$. Calculate the mean and Gauss curvatures of S_2 .

Suggested Exercises

(no need to hand in)

- 1. Given a surface $S \subset \mathbb{R}^3$, prove that the set of isometries $f : S \to S$ form a group under composition. This is called the *isometry group of* S. What is the isometry group of the unit sphere $\mathbb{S}^2 = \{x^2 + y^2 + z^2 = 1\}$?
- 2. Find a local isometry between the helicoid and the catenoid. Are they globally isometric?
- 3. Let $\alpha(t) : (-\epsilon, \epsilon) \to S$ be a curve on a surface $S \subset \mathbb{R}^3$. Suppose X(t), Y(t) are two tangential vector fields defined along the curve α . Prove that

$$\frac{d}{dt}\langle X(t), Y(t)\rangle = \langle \nabla_{\alpha'(t)}X(t), Y(t)\rangle + \langle X(t), \nabla_{\alpha'(t)}Y(t)\rangle.$$

Using this result, prove that the angle between two parallel vector fields X, Y along a curve is always constant.