MATH 4030 Differential Geometry Homework 7

due 1/11/2015 (Tue) at 5PM

Problems

(to be handed in)

Unless otherwise stated, we use U, O to denote connected open subsets of \mathbb{R}^n . The symbols S, S_1, S_2, S_3 always denote surfaces in \mathbb{R}^3 . Recall that a *critical point* of a smooth function $f: S \to \mathbb{R}$ is a point $p \in S$ such that $df_p = 0$.

- 1. Let $S \subset \mathbb{R}^3$ be a surface. Fix $p_0 \in \mathbb{R}^3$ and consider the smooth function $f: S \to \mathbb{R}$ defined by $f(p) = |p p_0|^2$.
 - (a) Show that $p \in S$ is a critical point of f if and only if p_0 lies on the normal line of S at p, i.e.

$$p_0 = p + \lambda N(p)$$

for some $\lambda \in \mathbb{R}$, here N(p) is any unit normal to S at p.

(b) Calculate the hessian of f at a critical point $p \in S$ and show that

$$d^{2}f_{p}(v) = 2(|v|^{2} - \lambda A(v, v)),$$

where λ is the constant as in (a) and A is the second fundamental form of S at p (relative to the normal N as in (a)).

- 2. Show that there is no compact surface $S \subset \mathbb{R}^3$ with K < 0 everywhere.
- 3. (a) Let p be a point on a surface $S \subset \mathbb{R}^3$. Prove that K(p) > 0 if and only if there exists a point $p_0 \in \mathbb{R}^3$ such that p is a local maximum of the function $f(x) = |x p_0|^2$.
 - (b) Show that there is no compact surface $S \subset \mathbb{R}^3$ with $K \leq 0$ everywhere.
- 4. Compute the mean curvature H and Gauss curvature K of the catenoid given by the parametrization

$$X(u, v) = (\cosh v \cos u, \cosh v \sin u, v), \qquad (u, v) \in (0, 2\pi) \times \mathbb{R}.$$

5. Show that a graphical surface $S = \{z = f(x, y)\}$ is minimal (i.e. $H \equiv 0$) if and only if f satisfies the minimal surface equation:

$$(1+f_x^2)f_{yy} - 2f_x f_y f_{xy} + (1+f_y^2)f_{xx} = 0.$$

Suggested Exercises

(no need to hand in)

1. Compute the mean curvature H and Gauss curvature K of the torus of revolution given by the parametrization

$$X(u, v) = ((a + b\cos u)\cos v, (a + b\cos u)\sin v, b\sin u),$$
 $(u, v) \in (0, 2\pi) \times (0, 2\pi),$

where a > b > 0 are constants.

- 2. Describe the region of \mathbb{S}^2 covered by the image of the Gauss map of the following surfaces:
 - (a) Paraboloid of revolution $z = x^2 + y^2$.
 - (b) Hyperboloid of revolution $x^2 + y^2 z^2 = 1$.
 - (c) Catenoid $x^2 + y^2 = \cosh^2 z$.
- 3. Determine all the umbilic points on the ellipsoid (where a > b > c > 0 are distinct positive real numbers):

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

At which point(s) does the Gauss curvature K attains its maximum? What about for the mean curvature H (assuming the orientation is chosen such that H > 0)?