MATH 4030 Differential Geometry Homework 4

due 4/10/2015 (Tue) at 5PM

Problems

(to be handed in)

- 1. Show that the two-sheeted cone $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2\}$ is not a surface.
- 2. Let $F(x, y, z) = z^2$. Prove that 0 is not a regular value of F but $F^{-1}(0)$ is a surface.
- 3. Show that $S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 y^2\}$ is a surface and that the following are parametrizations for S:

$$X_1(u, v) = (u + v, u - v, 4uv), \quad (u, v) \in \mathbb{R}^2$$
$$X_2(u, v) = (u \cosh v, u \sinh v, u^2), \quad (u, v) \in \mathbb{R}^2, u \neq 0$$

- 4. Determine the tangent planes of the surface $S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 z^2 = 1\}$ at the points $(x, y, 0) \in S$ and show that they are all parallel to the z-axis.
- 5. If all normal lines to a connected surface S passes through a fixed point $p_0 \in \mathbb{R}^3$, show that S is contained in a sphere.

Suggested Exercises

(no need to hand in)

1. Let $S = \{p \in \mathbb{R}^3 : |p|^2 - \langle p, a \rangle^2 = r^2\}$ with |a| = 1 and r > 0 be a right cylinder of radius r whose axis is the line passing through the origin with direction a. Prove that

$$T_p S = \{ v \in \mathbb{R}^3 : \langle p, v \rangle - \langle p, a \rangle \langle a, v \rangle = 0 \}.$$

Conclude that all the normal lines of S cut the axis orthogonally. Prove the converse as well: i.e. if S is a connected surface whose normal lines all intersect a fixed straight line $\ell \subset \mathbb{R}^3$ orthogonally, then S is a subset of a right cylinder with axis ℓ .

- 2. Construct an explicit diffeomorphism between the ellipsoid $S_1 = \{(x, y, z) \in \mathbb{R}^3 : \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1\}$ and the sphere $S_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$
- 3. Show that each of the subset $(a, b, c, \neq 0)$ below are surfaces

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = ax\},\$$

$$S_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = by\},\$$

$$S_3 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = cz\}.$$

Prove that they all intersect orthogonally.

- 4. Let $S \subset \mathbb{R}^3$ be a surface. Suppose $P \subset \mathbb{R}^3$ is a plane such that S lies on one side of P, show that $T_q P = T_q S$ at all $q \in P \cap S$.
- 5. Let S be a compact surface, show that there exists a straight line ℓ cutting S orthogonally at at least two points.