MATH 4030 Differential Geometry Homework 11

due 1/12/2015 (Thur) at 5PM

Problems

(to be handed in)

- 1. Follow the steps below to give a proof of the isoperimetric inequality in the plane. Let $\alpha(s)$: $[0,L] \to \mathbb{R}^2$ be a simple closed plane curve p.b.a.l. Let A be the area of the region Ω bounded by the curve α .
 - (a) Show that

$$2A \le \left(\int_0^L |\alpha(s)|^2 \ ds \right)^{\frac{1}{2}} L^{\frac{1}{2}}.$$

- (b) Prove that there exists some $s_0 \in (0, L/2)$ such that the line joining $\alpha(0)$ and $\alpha(L/2)$ is perpendicular to the line joining $\alpha(s_0)$ and $\alpha(s_0 + L/2)$.
- (c) By (b), we can assume after a translation and rotation of \mathbb{R}^2 that the two perpendicular lines in (b) intersect at the origin and that

$$\frac{\alpha(L/2) - \alpha(0)}{|\alpha(L/2) - \alpha(0)|} = (1,0) = e_1, \quad \frac{\alpha(s_0 + L/2) - \alpha(s_0)}{|\alpha(s_0 + L/2) - \alpha(s_0)|} = (0,1) = e_2.$$

Prove that

$$\int_0^L |\alpha(s)|^2 ds \le \frac{L^3}{4\pi^2}$$

using the Wirtinger's inequality which says that

$$\int_{a}^{b} (f'(t))^{2} dt \ge \frac{\pi^{2}}{(b-a)^{2}} \int_{a}^{b} (f(t))^{2} dt$$
 (1)

for any smooth function $f:[a,b]\to\mathbb{R}$ such that f(a)=f(b)=0. Moreover equality holds in (1) if and only if $f(t)=C\sin\frac{\pi(t-a)}{b-a}$ for some constant $C\in\mathbb{R}$.

- (d) Using the above results, prove the isoperimetric inequality $4\pi A \leq L^2$. What about the equality case?
- 2. If $S \subset \mathbb{R}^3$ is a closed surface with positive Gauss curvature K > 0, show that any two simple closed geodesics on S must intersect.
- 3. Let $\alpha(s):[0,L]\to\mathbb{R}^3$ be a closed space curve p.b.a.l. with positive curvature k>0. Suppose $N(s):[0,L]\to\mathbb{S}^2$ be the principal normal of α considered as a curve on the unit sphere \mathbb{S}^2 .
 - (a) Show that $N(s): [0, L] \to \mathbb{S}^2$ is a regular curve.

(b) Let t = t(s) be the arc length parameter of the curve N in (a). Show that the geodesic curvature of N in \mathbb{S}^2 is given by

$$k_g = \frac{d}{ds} \left(\tan^{-1} \frac{\tau}{k} \right) \left(\frac{dt}{ds} \right)^{-1},$$

where τ is the torsion of α in \mathbb{R}^3 .

(c) Assume furthermore that $N:[0,L]\to\mathbb{S}^2$ is a simple closed curve. Show that the image of N divides \mathbb{S}^2 into two regions with the same area.

Suggested Exercises

(no need to hand in)

- 1. Let $\Sigma \subset \mathbb{R}^3$ be a closed orientable surface which is not homeomorphic to a sphere. Prove that there are points on Σ where the Gauss curvature K is positive, negative and zero respectively.
- 2. Let T be a torus of revolution which can be parametrized (except along two curves) by

$$f(u,v) = ((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u), \qquad 0 < u < 2\pi, 0 < v < 2\pi.$$

Prove by an explicit calculation that the total Gauss curvature is

$$\int_T K \, dA = 0.$$

- 3. Let $\alpha(s):[0,L]\to\mathbb{R}^2$ be a simple closed plane curve p.b.a.l. which is contained in a closed disk of radius r>0. Prove that
 - (a) there exists $s \in [0, L]$ such that the curvature satisfies $|k(s)| \ge 1/r$;
 - (b) if A is the area enclosed by the curve α , then

$$A \leq \frac{r}{2}L$$

and equality holds if and only if α is a circle of radius r.

4. Let $\alpha(s):[0,L]\to\mathbb{R}^2$ be a simple closed convex plane curve p.b.a.l which is oriented in the counterclockwise direction. Let $\{T(s),N(s)\}$ be the Frenet frame of $\alpha(s)$. The curve $\beta(s):[0,L]\to\mathbb{R}^2$ given by

$$\beta(s) := \alpha(s) - rN(s),$$

where r > 0 is a constant, is called a parallel curve to α . Show that

- (a) Length (β) = Length $(\alpha) + 2\pi r$.
- (b) Area (Ω_{β}) = Area $(\Omega_{\alpha}) + rL + \pi r^2$,

where Ω_{α} , Ω_{β} are the regions bounded by α and β respectively.