MATH 4030 Differential Geometry Homework 10

due 22/11/2015 (Tue) at 5PM

Problems

(to be handed in)

1. Does there exist a parametrization $X(u, v) : U \to \mathbb{R}^3$ of a surface S such that the first and second fundamental forms are given by:

(a)
$$(g_{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $(h_{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$;
(b) $(g_{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & \cos^2 u \end{pmatrix}$ and $(h_{ij}) = \begin{pmatrix} \cos^2 u & 0 \\ 0 & 1 \end{pmatrix}$?

Explain your answer.

- 2. Prove that if $\alpha : (a, b) \to \mathbb{S}^2$ is a geodesic on the unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$, then α lies inside a great circle, i.e. there exists some constant vector $v \in \mathbb{R}^3$ such that $\langle \alpha(t), v \rangle = 0$ for all $t \in (a, b)$.
- 3. Describe all the geodesics on the right cylinder $S = \{(x, y, z) : x^2 + y^2 = 1\}.$
- 4. Let p_0 be a pole of a unit sphere \mathbb{S}^2 and q, r be two points on the corresponding equator in such a way that the meridians p_0q and p_0r make an angle θ at p_0 . Consider a unit vector v tangent to the meridian p_0q at p_0 , and take the parallel transport of v along the closed curve made up by the meridian p_0q , the parallel qr, and the meridian rp_0 (Fig. 4-21). Determine the angle between the final position of v after parallel transport with the initial vector v.

Suggested Exercises

(no need to hand in)

- 1. Show that if all the geodesics of a connected surface are plane curves, then the surface is contained in a plane or a sphere.
- 2. Let $X(u^1, u^2) : U \to S \subset \mathbb{R}^3$ be a parametrization of a surface. Let ∂_1, ∂_2 be the coordinate vector field $\frac{\partial}{\partial u^1}, \frac{\partial}{\partial u^2}$ respectively and N be its associated unit normal. The first and second fundamental forms are (g_{ij}) and (A_{ij}) and Γ_{ij}^k denotes the Christoffel symbols. Let (g^{ij}) be the inverse matrix of (g_{ij}) . The goal of this exercise is to show that the equation

$$\partial_{\ell}\partial_{i}N = \partial_{i}\partial_{\ell}N \tag{1}$$

simply yields the Codazzi equation.

(a) Use the Gauss and Weingarten equations to show that

$$\partial_{\ell}\partial_{i}N = [\partial_{\ell}(g^{kj}A_{ij}) + g^{pj}\Gamma^{k}_{\ell p}A_{ij}]\partial_{k} - (g^{pj}A_{\ell p}A_{ij})N.$$

Hence, the normal components of (1) are automatically equal.

- (b) Prove that $\partial_{\ell}g^{kq} = -g^{qi}g^{kp}\partial_{\ell}g_{pi}$.
- (c) Use (b) and the formula of Γ_{ij}^k in terms of g_{ij} to show that

$$\partial_\ell g^{kq} + g^{pq} \Gamma^k_{\ell p} = -g^{kj} \Gamma^q_{j\ell}.$$

(d) Use (a) and (c) to show that the tangential component of (1) gives the Codazzi equation.

3. Study the geodesics on a torus of revolution.