
MATH 4030 Differential Geometry
Homework 6

Suggested solutions

1. (2 points) The idea is to show that a surface S with this property has to be totally umbilic
(i.e. the shape operator Sp : TpS → TpS is a scalar multiple of the identity), and thus
by Lecture notes (part 4) p.15-16 S is contained in a plane or a sphere. Let p ∈ S be
any point, and let v ∈ TpS be any tangent vector. We need to show that Sp takes v to a
multiple of itself. It suffices to assume |v| = 1. We know that there is a (unique) geodesic
α : (−ε, ε) → S with α(0) = p and α′(0) = v. Since |a′| is constant, it follows that α is
p.b.a.l.. Recall that

α′′ = Dα′α
′ = A(α′, α′)N ◦ α +∇α′α

′

where N is the normal of S. To avoid confusion, we let Nα be the normal of α as a space
curve. Since α is a geodesic, ∇α′α

′ = 0, and hence α′′ is parallel to N . In other words,
Nα is equal to ±N ◦ α. Since we have no preference for the sign of N , we may assume
Nα = N ◦ α.

By the given assumption, α is a plane curve. Recall that α is a plane curve if and only if
the torsion τ of α is identically zero, but attention this is true only when the curvature κ
of α is non-zero everywhere (otherwise τ is not even well-defined). Let us first assume that
α′′(0) 6= 0 which implies κ 6= 0 near 0 so that τ is well-defined there. We will address the
case α′′(0) = 0 later. Under this assumption, we have τ(0) = 0, and so N ′α(0) = −κ(0)α′(0).
It follows that

Sp(v) = −dNp(v) = − d

ds
(N ◦ α)

∣∣∣∣
s=0

= −N ′α(0) = κ(0)α′(0) = κ(0)v.

We have shown that if the geodesic αv corresponding to v satisfies α′′v(0) 6= 0, then v is an
eigenvector of Sp. Now what if α′′(0) = 0? Well, we don’t need to deal with it because
in order to show Sp is a scalar multiple of the identity, one only needs to check that Sp
has at least 5 unit eigenvectors (why?). If it happens that we cannot find 5 distinct unit
vectors v ∈ TpS such that the geodesic αv defined above satisfies α′′v(0) 6= 0, then the second
fundamental form Ap(v, v) will vanish for almost all v ∈ TpS, since α′′v(0) = Ap(v, v)Np.
But then Ap(v, v) will vanish for all v, and hence 〈v,Spw〉 = Ap(v, w) = 0 for all v, w ∈ TpS,
giving Sp ≡ 0 in which case Sp is also a scalar multiple of the identity.

2. (2 points) Suppose there are two simple closed geodesics α1 and α2 on S which do not
intersect. By Q3 below, we know that S is homeomorphic to the sphere, and hence by
Jordan curve theorem, α1 separates S into two regions D1 and D2, each homeomorphic to
the disk. WLOG, assume D1 contains α2 (entirely, since α1 ∩ α2 = ∅). Then by Jordan
curve theorem again, α2 bounds a disk D3 which lies entirely in D1. Now it is easy to see
that α1 and α2 together bound a cylinder Σ.

By applying Gauss-Bonnet theorem to Σ, we have∫
Σ

KdA ±
∫
α1

κgds ±
∫
α2

κgds = 2πχ(Σ).

Since α1 and α2 are geodesics, and χ(Σ) = χ(circle) = 0, it follows that
∫

Σ
KdA = 0, in

contradiction to the assumption that K > 0 everywhere. Therefore, any two simple closed
geodesics on S must intersect.
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3. (1 point) (Revised: Σ is connected.) First by HW4 Q1, we know that Σ contains a point
p such that K(p) > 0. Next by the classification of closed orientable surfaces, we have
χ(Σ) = 2− 2g where g is the genus of Σ which is greater than 0 if Σ is not homeomorphic

to the sphere. Hence χ(Σ) 6 0. Then by Gauss-Bonnet theorem

∫
Σ

KdA = 2πχ(Σ) 6 0,

we see that K cannot be non-negative everywhere (since K is positive somewhere), in
other words, there is q ∈ Σ such that K(q) < 0. Finally by intermediate value theorem, Σ
contains a point r (lying in each path in Σ joining p and q) such that K(r) = 0.

4. (1 point) By HW4 Q4, we know that the area element dA of the given torus T is

dA = |Xu ×Xv| dudv = (2 + cosu)dudv

and the Gauss curvature K of T is

K =
cosu

(2 + cosu)

where we have put a = 2 and b = 1. It follows that∫
T

KdA =

∫ 2π

0

∫ 2π

0

cosu

(2 + cosu)
· (2 + cosu)dudv

=

∫ 2π

0

∫ 2π

0

cosu dudv

= 0.

5. (2 points)

(a) We have

β′(s) = α′(s)− rN ′(s)
= α′(s)− rJα′′(s)
= α′(s)− rJ(κ(s)N(s))

= (1 + rκ(s))α′(s)

(where J denotes the rotation by 90◦ anti-clockwise as usual). It follows that

Length(β) =

∫ L

0

|β′(s)| ds =

∫ L

0

(1 + rκ(s))ds = L+ 2πr = Length(α) + 2πr.

(Here we have used the Gauss-Bonnet theorem for plane curves and the convexity of
α which implies κ > 0.)
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(b) By Green’s formula, we have

Area(Ωβ) = −1

2

∫ L

0

〈β(s), Jβ′(s)〉 ds

= −1

2

∫ L

0

〈α(s)− rN(s), (1 + rκ(s))Jα′(s)〉 ds

= −1

2

[∫ L

0

〈α(s), Jα′(s)〉 ds+

∫ L

0

〈α(s), rκ(s)N(s)〉 ds−
∫ L

0

r(1 + rκ(s))〈N(s), N(s)〉 ds
]

= Area(Ωα)− 1

2

∫ L

0

r〈α(s), α′′(s)〉 ds+
1

2

∫ L

0

r(1 + rκ(s)) ds

= Area(Ωα) +
1

2

∫ L

0

r〈α′(s), α′(s)〉 ds+
1

2
(rL+ 2πr2)

= Area(Ωα) +
1

2
rL+

1

2
rL+ πr2

= Area(Ωα) + rL+ πr2.

6. (2 points)

(a) This follows from N ′ = −κT − τB.

(b)
dN

dt
=
dN

ds
· ds
dt

=
−κT − τB
|N ′(s)|

=
1√

κ2 + τ 2
(−κT − τB)

(c) First notice that the normal n of N(t) in S2 is

n(t) = N(t)×N ′(t) =
1√

κ2 + τ 2
(−τT + κB).

Then we have

κg = 〈N ′′(t),n〉

=
1√

κ2 + τ2

[
−τ
〈
d

ds

(
1√

κ2 + τ2
(−κT − τB)

)
, T

〉
+ κ

〈
d

ds

(
1√

κ2 + τ2
(−κT − τB)

)
, B

〉](
dt

ds

)−1

=
1√

κ2 + τ2

[
−τ d

ds

〈(
1√

κ2 + τ2
(−κT − τB)

)
, T

〉
+ κ

d

ds

〈(
1√

κ2 + τ2
(−κT − τB)

)
, B

〉](
dt

ds

)−1

=
1√

κ2 + τ2

[
−τ d

ds

(
−κ√
κ2 + τ2

)
+ κ

d

ds

(
−τ√
κ2 + τ2

)](
dt

ds

)−1

= −
(

κ√
κ2 + τ2

)2
d

ds

(
τ√

κ2 + τ2

/
κ√

κ2 + τ2

)(
dt

ds

)−1

= − 1

1 +
(
τ
κ

)2 d

ds

( τ
κ

)( dt
ds

)−1

= − d

ds

(
tan−1 τ

κ

)( dt
ds

)−1

.

(d) By Gauss-Bonnet theorem, it suffices to show that the integral of the geodesic curvature
of N along N is zero. Indeed,∫

N

κgdt =

∫ L

0

− d

ds

(
tan−1 τ

κ

)( dt
ds

)−1

dt

= −
∫ L

0

d

ds

(
tan−1 τ

κ

)
ds

= 0 (∵ N is a simple closed curve).
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