MATH 4030 Differential Geometry
Homework 6
Suggested solutions

1. (2 points) The idea is to show that a surface S with this property has to be totally umbilic
(i.e. the shape operator S, : 1,5 — T,S is a scalar multiple of the identity), and thus
by Lecture notes (part 4) p.15-16 S is contained in a plane or a sphere. Let p € S be
any point, and let v € 7,5 be any tangent vector. We need to show that S, takes v to a
multiple of itself. It suffices to assume |v| = 1. We know that there is a (unique) geodesic
a: (—e,e) — S with a(0) = p and &/(0) = v. Since |d| is constant, it follows that « is
p-b.a.l.. Recall that

" =Dy = A(d,d/)Noa+ Vyd

where N is the normal of S. To avoid confusion, we let N, be the normal of a as a space
curve. Since « is a geodesic, Vo' = 0, and hence o is parallel to N. In other words,
N, is equal to £N o a. Since we have no preference for the sign of N, we may assume
N,=Noao.

By the given assumption, « is a plane curve. Recall that « is a plane curve if and only if
the torsion 7 of « is identically zero, but attention this is true only when the curvature x
of av is non-zero everywhere (otherwise 7 is not even well-defined). Let us first assume that
a”(0) # 0 which implies k # 0 near 0 so that 7 is well-defined there. We will address the
case o’ (0) = 0 later. Under this assumption, we have 7(0) = 0, and so N/ (0) = —x(0)c/(0).
It follows that

§,(0) = ~dN,(v) = — (N o) = ~NL(0) = s(0)a’(0) = K(O)r:
s=0

We have shown that if the geodesic «, corresponding to v satisfies a,(0) # 0, then v is an
eigenvector of S,. Now what if a”(0) = 07 Well, we don’t need to deal with it because
in order to show S, is a scalar multiple of the identity, one only needs to check that S,
has at least 5 unit eigenvectors (why?). If it happens that we cannot find 5 distinct unit
vectors v € T,,5 such that the geodesic a, defined above satisfies a)(0) # 0, then the second
fundamental form A,(v,v) will vanish for almost all v € 7,5, since o/ (0) = A,(v,v)N,.
But then A, (v, v) will vanish for all v, and hence (v, S,w) = A, (v, w) = 0 for all v, w € T,S,
giving S, = 0 in which case S, is also a scalar multiple of the identity.

2. (2 points) Suppose there are two simple closed geodesics a; and as on S which do not
intersect. By Q3 below, we know that S is homeomorphic to the sphere, and hence by
Jordan curve theorem, oy separates S into two regions D and D, each homeomorphic to
the disk. WLOG, assume D; contains «y (entirely, since ay N ag = ()). Then by Jordan
curve theorem again, oy bounds a disk D3 which lies entirely in D;. Now it is easy to see
that oy and ap together bound a cylinder X.

By applying Gauss-Bonnet theorem to ¥, we have

/KdA i/ Kgds j:/ keds = 2mx ().
2 ai (o3

Since a; and oy are geodesics, and x(X) = x(circle) = 0, it follows that [, KdA = 0, in
contradiction to the assumption that K > 0 everywhere. Therefore, any two simple closed
geodesics on S must intersect.



3. (1 point) (Revised: ¥ is connected.) First by HW4 Q1, we know that ¥ contains a point
p such that K(p) > 0. Next by the classification of closed orientable surfaces, we have
X(2) = 2 — 2g where g is the genus of ¥ which is greater than 0 if 3 is not homeomorphic

to the sphere. Hence x(X2) < 0. Then by Gauss-Bonnet theorem / KdA =2mx(2) <0,

b
we see that K cannot be non-negative everywhere (since K is positive somewhere), in
other words, there is ¢ € ¥ such that K(q) < 0. Finally by intermediate value theorem,
contains a point 7 (lying in each path in ¥ joining p and ¢) such that K(r) = 0.

4. (1 point) By HW4 Q4, we know that the area element dA of the given torus T is

= | X, x X,| dudv = (2 + cos u)dudv

and the Gauss curvature K of T is
cos U

K=—_""
(2 + cosu)

where we have put a = 2 and b = 1. It follows that

/ KdA = / / cont - (2 + cos u)dudv
2 + cosu)

2w 2
= / / cosu dudv
o Jo

5. (2 points)

(a) We have

o/ (s) —rN'(s)
=d'(s) —rJa"(s)

o/ (s) = rJ (k(s)N(s))
(1+rr(s))a/(s)

(where J denotes the rotation by 90° anti-clockwise as usual). It follows that

Length(3) = / 16(s)] ds = /0 (14 rk(s))ds = L + 2mr = Length(«) + 27r.

(Here we have used the Gauss-Bonnet theorem for plane curves and the convexity of
a which implies k > 0.)



(b) By Green’s formula, we have

Area(Qg) = *%/0 (B(s), JB'(s)) ds

=5 [ (als) = N (L () (5) ds

— 3 | [ g0 @) st [ate N ) ds = [ ) (e N9 ds

= Area(Qq) — %/o r{a(s),a”(s)) ds + %/0 r(1+rk(s)) ds
L
— Area(Qa) + %/O r(a(s), ' (s)) ds + = (rL+27r7’ )

1 1
= Area(Q.) + ETL + QTL +7r?

= Area(Q) + L + 7r’.

6. (2 points)
(a) This follows from N’ = —xT — 7B.

(b)
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(c) First notice that the normal n of N(¢) in §? is

n(t) = N(t) x N'(t) = ﬁ(_TT—F kB).
Then we have
kg = (N"(t),n)
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(d) By Gauss-Bonnet theorem, it suffices to show that the integral of the geodesic curvature
of N along N is zero. Indeed,

/N/-igdt:/OL—diS (ta —1T> (;li)_l dt
L
:_/0 C;i(tan E) ds

=0 (.- N is a simple closed curve).



