MATH 4030 Differential Geometry Homework 6 Suggested solutions

1. (2 points) The idea is to show that a surface S with this property has to be totally umbilic (i.e. the shape operator $S_p : T_pS \to T_pS$ is a scalar multiple of the identity), and thus by Lecture notes (part 4) p.15-16 S is contained in a plane or a sphere. Let $p \in S$ be any point, and let $v \in T_pS$ be any tangent vector. We need to show that S_p takes v to a multiple of itself. It suffices to assume |v| = 1. We know that there is a (unique) geodesic $\alpha : (-\varepsilon, \varepsilon) \to S$ with $\alpha(0) = p$ and $\alpha'(0) = v$. Since |a'| is constant, it follows that α is p.b.a.l.. Recall that

$$\alpha'' = D_{\alpha'}\alpha' = A(\alpha', \alpha')N \circ \alpha + \nabla_{\alpha'}\alpha'$$

where N is the normal of S. To avoid confusion, we let N_{α} be the normal of α as a space curve. Since α is a geodesic, $\nabla_{\alpha'}\alpha' = 0$, and hence α'' is parallel to N. In other words, N_{α} is equal to $\pm N \circ \alpha$. Since we have no preference for the sign of N, we may assume $N_{\alpha} = N \circ \alpha$.

By the given assumption, α is a plane curve. Recall that α is a plane curve if and only if the torsion τ of α is identically zero, but attention this is true only when the curvature κ of α is non-zero everywhere (otherwise τ is not even well-defined). Let us first assume that $\alpha''(0) \neq 0$ which implies $\kappa \neq 0$ near 0 so that τ is well-defined there. We will address the case $\alpha''(0) = 0$ later. Under this assumption, we have $\tau(0) = 0$, and so $N'_{\alpha}(0) = -\kappa(0)\alpha'(0)$. It follows that

$$\mathcal{S}_p(v) = -dN_p(v) = -\left. \frac{d}{ds} (N \circ \alpha) \right|_{s=0} = -N'_{\alpha}(0) = \kappa(0)\alpha'(0) = \kappa(0)v.$$

We have shown that if the geodesic α_v corresponding to v satisfies $\alpha''_v(0) \neq 0$, then v is an eigenvector of \mathcal{S}_p . Now what if $\alpha''(0) = 0$? Well, we don't need to deal with it because in order to show \mathcal{S}_p is a scalar multiple of the identity, one only needs to check that \mathcal{S}_p has at least 5 unit eigenvectors (why?). If it happens that we cannot find 5 distinct unit vectors $v \in T_p S$ such that the geodesic α_v defined above satisfies $\alpha''_v(0) \neq 0$, then the second fundamental form $A_p(v, v)$ will vanish for almost all $v \in T_p S$, since $\alpha''_v(0) = A_p(v, v)N_p$. But then $A_p(v, v)$ will vanish for all v, and hence $\langle v, \mathcal{S}_p w \rangle = A_p(v, w) = 0$ for all $v, w \in T_p S$, giving $\mathcal{S}_p \equiv 0$ in which case \mathcal{S}_p is also a scalar multiple of the identity.

2. (2 points) Suppose there are two simple closed geodesics α_1 and α_2 on S which do not intersect. By Q3 below, we know that S is homeomorphic to the sphere, and hence by Jordan curve theorem, α_1 separates S into two regions D_1 and D_2 , each homeomorphic to the disk. WLOG, assume D_1 contains α_2 (entirely, since $\alpha_1 \cap \alpha_2 = \emptyset$). Then by Jordan curve theorem again, α_2 bounds a disk D_3 which lies entirely in D_1 . Now it is easy to see that α_1 and α_2 together bound a cylinder Σ .

By applying Gauss-Bonnet theorem to Σ , we have

$$\int_{\Sigma} K dA \ \pm \int_{\alpha_1} \kappa_g ds \ \pm \int_{\alpha_2} \kappa_g ds = 2\pi \chi(\Sigma).$$

Since α_1 and α_2 are geodesics, and $\chi(\Sigma) = \chi(\text{circle}) = 0$, it follows that $\int_{\Sigma} K dA = 0$, in contradiction to the assumption that K > 0 everywhere. Therefore, any two simple closed geodesics on S must intersect.

- 3. (1 point) (Revised: Σ is connected.) First by HW4 Q1, we know that Σ contains a point p such that K(p) > 0. Next by the classification of closed orientable surfaces, we have $\chi(\Sigma) = 2 2g$ where g is the genus of Σ which is greater than 0 if Σ is not homeomorphic to the sphere. Hence $\chi(\Sigma) \leq 0$. Then by Gauss-Bonnet theorem $\int_{\Sigma} K dA = 2\pi \chi(\Sigma) \leq 0$, we see that K cannot be non-negative everywhere (since K is positive somewhere), in other words, there is $q \in \Sigma$ such that K(q) < 0. Finally by intermediate value theorem, Σ contains a point r (lying in each path in Σ joining p and q) such that K(r) = 0.
- 4. (1 point) By HW4 Q4, we know that the area element dA of the given torus T is

$$dA = |X_u \times X_v| \ dudv = (2 + \cos u) dudv$$

and the Gauss curvature K of T is

$$K = \frac{\cos u}{(2 + \cos u)}$$

where we have put a = 2 and b = 1. It follows that

$$\int_{T} K dA = \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{\cos u}{(2 + \cos u)} \cdot (2 + \cos u) du dv$$
$$= \int_{0}^{2\pi} \int_{0}^{2\pi} \cos u \, du dv$$
$$= 0.$$

5. (2 points)

(a) We have

$$\beta'(s) = \alpha'(s) - rN'(s)$$

= $\alpha'(s) - rJ\alpha''(s)$
= $\alpha'(s) - rJ(\kappa(s)N(s))$
= $(1 + r\kappa(s))\alpha'(s)$

(where J denotes the rotation by 90° anti-clockwise as usual). It follows that

$$\operatorname{Length}(\beta) = \int_0^L |\beta'(s)| \, ds = \int_0^L (1 + r\kappa(s)) ds = L + 2\pi r = \operatorname{Length}(\alpha) + 2\pi r.$$

(Here we have used the Gauss-Bonnet theorem for plane curves and the convexity of α which implies $\kappa \ge 0$.)

(b) By Green's formula, we have

$$\begin{aligned} \operatorname{Area}(\Omega_{\beta}) &= -\frac{1}{2} \int_{0}^{L} \langle \beta(s), J\beta'(s) \rangle \ ds \\ &= -\frac{1}{2} \int_{0}^{L} \langle \alpha(s) - rN(s), (1 + r\kappa(s)) J\alpha'(s) \rangle \ ds \\ &= -\frac{1}{2} \left[\int_{0}^{L} \langle \alpha(s), J\alpha'(s) \rangle \ ds + \int_{0}^{L} \langle \alpha(s), r\kappa(s)N(s) \rangle \ ds - \int_{0}^{L} r(1 + r\kappa(s)) \langle N(s), N(s) \rangle \ ds \right] \\ &= \operatorname{Area}(\Omega_{\alpha}) - \frac{1}{2} \int_{0}^{L} r \langle \alpha(s), \alpha''(s) \rangle \ ds + \frac{1}{2} \int_{0}^{L} r(1 + r\kappa(s)) \ ds \\ &= \operatorname{Area}(\Omega_{\alpha}) + \frac{1}{2} \int_{0}^{L} r \langle \alpha'(s), \alpha'(s) \rangle \ ds + \frac{1}{2} (rL + 2\pi r^{2}) \\ &= \operatorname{Area}(\Omega_{\alpha}) + \frac{1}{2} rL + \frac{1}{2} rL + \pi r^{2} \\ &= \operatorname{Area}(\Omega_{\alpha}) + rL + \pi r^{2}. \end{aligned}$$

6. (2 points)

- (a) This follows from $N' = -\kappa T \tau B$.
- (b)

$$\frac{dN}{dt} = \frac{dN}{ds} \cdot \frac{ds}{dt} = \frac{-\kappa T - \tau B}{|N'(s)|} = \frac{1}{\sqrt{\kappa^2 + \tau^2}}(-\kappa T - \tau B)$$

(c) First notice that the normal ${\bf n}$ of N(t) in \mathbb{S}^2 is

$$\mathbf{n}(t) = N(t) \times N'(t) = \frac{1}{\sqrt{\kappa^2 + \tau^2}}(-\tau T + \kappa B).$$

Then we have

$$\begin{aligned} \kappa_g &= \langle N''(t), \mathbf{n} \rangle \\ &= \frac{1}{\sqrt{\kappa^2 + \tau^2}} \left[-\tau \left\langle \frac{d}{ds} \left(\frac{1}{\sqrt{\kappa^2 + \tau^2}} (-\kappa T - \tau B) \right), T \right\rangle + \kappa \left\langle \frac{d}{ds} \left(\frac{1}{\sqrt{\kappa^2 + \tau^2}} (-\kappa T - \tau B) \right), B \right\rangle \right] \left(\frac{dt}{ds} \right)^{-1} \\ &= \frac{1}{\sqrt{\kappa^2 + \tau^2}} \left[-\tau \frac{d}{ds} \left\langle \left(\frac{1}{\sqrt{\kappa^2 + \tau^2}} (-\kappa T - \tau B) \right), T \right\rangle + \kappa \frac{d}{ds} \left\langle \left(\frac{1}{\sqrt{\kappa^2 + \tau^2}} (-\kappa T - \tau B) \right), B \right\rangle \right] \left(\frac{dt}{ds} \right)^{-1} \\ &= \frac{1}{\sqrt{\kappa^2 + \tau^2}} \left[-\tau \frac{d}{ds} \left(\frac{-\kappa}{\sqrt{\kappa^2 + \tau^2}} \right) + \kappa \frac{d}{ds} \left(\frac{-\tau}{\sqrt{\kappa^2 + \tau^2}} \right) \right] \left(\frac{dt}{ds} \right)^{-1} \\ &= -\left(\frac{\kappa}{\sqrt{\kappa^2 + \tau^2}} \right)^2 \frac{d}{ds} \left(\frac{\tau}{\sqrt{\kappa^2 + \tau^2}} \right) \left(\frac{\kappa}{\sqrt{\kappa^2 + \tau^2}} \right) \left(\frac{dt}{ds} \right)^{-1} \\ &= -\frac{1}{1 + \left(\frac{\tau}{\kappa} \right)^2} \frac{d}{ds} \left(\frac{\tau}{\kappa} \right) \left(\frac{dt}{ds} \right)^{-1} . \end{aligned}$$

(d) By Gauss-Bonnet theorem, it suffices to show that the integral of the geodesic curvature of N along N is zero. Indeed,

$$\int_{N} \kappa_{g} dt = \int_{0}^{L} -\frac{d}{ds} \left(\tan^{-1} \frac{\tau}{\kappa} \right) \left(\frac{dt}{ds} \right)^{-1} dt$$
$$= -\int_{0}^{L} \frac{d}{ds} \left(\tan^{-1} \frac{\tau}{\kappa} \right) ds$$
$$= 0 \quad (\because N \text{ is a simple closed curve}).$$