
MATH 4030 Differential Geometry
Homework 4

Suggested solutions

1. (2 points)

(a) Let S be a surface and p0 6∈ S. From Tut7, we know that the Hessian of the distance-
square function f(x) = |x− p0|2 at a critical point p ∈ S and the second fundamental
form AN of S at p with respect to the normal N = p0−p

|p0−p| are related by the formula

Hess(f)p(ζ, θ) = 2[〈ζ, θ〉 − |p0 − p|(AN)p(ζ, θ)]

for any tangent vectors ζ, θ ∈ TpS. See also HW4 suggested ex. Q1.

Recall also what the Hessian of f can tell us about the (local) behaviour of f near the
critical point p:

• Hess(f)p > 0 =⇒ f attains local minimum at p;

• Hess(f)p < 0 =⇒ f attains local maximum at p;

• f attains local minimum at p =⇒ Hess(f)p > 0;

• f attains local maximum at p =⇒ Hess(f)p 6 0.

(⇐=) Suppose p is a local maximum of f . Then we have 2[〈ζ, ζ〉 − |p0− p|(AN)p(ζ, ζ)] =
Hess(f)p 6 0 for any ζ ∈ TpS. This shows that (AN)p > 0. Since the sign
of the Gauss curvature K is equal to the sign of the determinant of the matrix
representing AN with respect to the basis {Xu, Xv} coming from any chart (that’s

because K = det(A)
det(g)

), it follows that K(p) > 0.

(=⇒) Given K(p) > 0. Choose the unit normal N at p such that one of the (and hence
both, by the assumption) principal curvatures κ1 and κ2 at p are positive. Choose a
positive real number R such that R ·min(κ1, κ2) > 1 (warning: the strict inequality
sign cannot be replaced by the equality sign, see Remark 3). Let p0 = p + R · N .
It follows that

• p is a critical point of the function f(x) = |x− p0|2;
• (AN)p(ζ, ζ) > min(κ1, κ2)|ζ|2 (see Remark 2) so that

Hess(f)p(ζ, ζ) 6 2 (1−R ·min(κ1, κ2)) |ζ|2 < 0

for any non-zero ζ ∈ TpS.

In other words, Hess(f)p < 0 which implies that f attains local maximum at p.

(b) This is true because (a) shows that every compact surface S in R3 has at least one
point at which the Gauss curvature is strictly positive: simply choose a point p0 outside
S, then the point at which f(x) = |x− p0|2 attains maximum is the desired point.

Remark 1. (b) implies that in R3 there is no compact minimal surface (without boundary)
as H = 0 =⇒ K 6 0.

Remark 2. The second fundamental form of S at p with respect to N is defined to be

either the matrix

(
〈Xuu, N〉 〈Xuv, N〉
〈Xuv, N〉 〈Xvv, N〉

)
using a chart X, or the symmetric bilinear form

AN defined by
AN(ζ, θ) = 〈ζ,Sθ〉
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where S is the shape operator with respect to N . From this we see that if κ1, κ2 are
the principal curvatures (= eigenvalues of S) and ζ1, ζ2 are two corresponding principal
directions (= unit eigenvectors of S), then by expressing any vector ζ by aζ1 + bζ2, we have

AN(ζ, ζ) = κ1a
2 + κ2b

2 > min(κ1, κ2)|ζ|2.

Remark 3. We cannot take R such that R ·min(κ1, κ2) = 1. Here is a counter-example:
take S to be the graphical surface{(

x, y, g(x, y) = −1 +
1

2
(x2 + y2) + x3

)
| x, y ∈ R

}
and p = (0, 0,−1). Then the first and the second fundamental form with respect to the
chart X : (u, v) 7→ (u, v, g(u, v)) and the upward normal are both equal to the identity
matrix so that κ1 = κ2 = 1. If we take R = 1

min(κ1,κ2)
= 1, then p0 = (0, 0, 0), and so the

corresponding distance-square function f reads

(f ◦X)(u, v) = u2 + v2 +

(
−1 +

1

2
(u2 + v2) + u3

)2

.

Now put v = 0, so we have (f ◦X)(u, 0) = 1 − 2u3 + 1
4
u4 + u5 + u6. Because the leading

order term following the constant is −2u3 which is an odd function, we conclude that f
does not attain local maximum at p.

2. (1 point)

Catenoid:

Xu = (− cosh v sinu, cosh v cosu, 0)

Xv = (sinh v cosu, sinh v sinu, 1)

g =

(
cosh2 v 0

0 cosh2 v

)
Xu ×Xv = (cosh v cosu, cosh v sinu,− cosh v sinh v)

N =
Xu ×Xv

|Xu ×Xv|
=

1

cosh v
(cosu, sinu,− sinh v)

S(Xu) = −∂N
∂u

=
−1

cosh v
(− sinu, cosu, 0)

= − 1

cosh2 v
·Xu + 0 ·Xv

S(Xv) = −∂N
∂v

=
sinh v

cosh2 v

(
cosu, sinu,− sinh v +

cosh2 v

sinh v

)
= 0 ·Xu +

1

cosh2 v
·Xv
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[S]{Xu,Xv} =

( −1
cosh2 v

0
0 1

cosh2 v

)
H = 0 K =

−1

cosh4 v

Helicoid:

Xu = (−v sinu, v cosu, 1)

Xv = (cosu, sinu, 0)

g =

(
1 + v2 0

0 1

)
Xu ×Xv = (− sinu, cosu,−v)

N =
Xu ×Xv

|Xu ×Xv|
=

1√
1 + v2

(− sinu, cosu,−v)

S(Xu) = −∂N
∂u

=
1√

1 + v2
(cosu, sinu, 0)

= 0 ·Xu +
1√

1 + v2
·Xv

S(Xv) = −∂N
∂v

=
1

√
1 + v2

3 (−v sinu, v cosu, 1)

=
1

√
1 + v2

3 ·Xu + 0 ·Xv

[S]{Xu,Xv} =

(
0 1√

1+v2
3

1√
1+v2

0

)
H = 0 K = − 1

(1 + v2)2

3. (1 point) From HW3 Q7, we know that the mean curvature H of a graphical surface
{(x, y, f(x, y))} is given by

(1 + f 2
v )fuu − 2fufvfuv + (1 + f 2

u)fvv

(f 2
u + f 2

v + 1)
3
2

.

It follows that the surface is minimal if and only if the numerator

(1 + f 2
v )fuu − 2fufvfuv + (1 + f 2

u)fvv

is identically zero.
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4. (1 point)

Xu = (−b sinu cos v,−b sinu sin v, b cosu)

Xv = (−(a+ b cosu) sin v, (a+ b cosu) cos v, 0)

g =

(
b2 0
0 (a+ b cosu)2

)

Xu ×Xv = b(a+ b cosu)(− cosu cos v,− cosu sin v,− sinu)

N =
Xu ×Xv

|Xu ×Xv|
= (− cosu cos v,− cosu sin v,− sinu)

Xuu = (−b cosu cos v,−b cosu sin v,−b sinu)

Xuv = (b sinu sin v,−b sinu cos v, 0)

Xvv = (−(a+ b cosu) cos v,−(a+ b cosu) sin v, 0)

A =

(
b 0
0 (a+ b cosu) cosu

)

[S]{Xu,Xv} = g−1A =

(
1
b

0
0 cosu

a+b cosu

)
H =

1

b
+

cosu

a+ b cosu
K =

cosu

b(a+ b cosu)

5. (1 point) First note that f(S1) ⊆ S2 so that it is a well-defined smooth map f : S1 → S2.
Next we want to show that the first fundamental form of S1 (with respect to the chart
X : (u, v) 7→ (u, v, 0)) is the same as the one “pull-backed” from S2, namely the matrix
obtained by taking the inner products of the vectors df(Xu) and df(Xv). We have

df(Xu) =
∂(f ◦X)

∂u
= (− sinu, cosu, 0)

df(Xv) =
∂(f ◦X)

∂v
= (0, 0, 1)

〈df(Xu), df(Xu)〉 = 1

〈df(Xu), df(Xv)〉 = 0

〈df(Xv), df(Xv)〉 = 1

so that the “pull-back” of the first fundamental form of S2 is the identity matrix which is
the same as the first fundamental form of S1 with respect to the chart X.
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6. (2 points) Let X : R>0 × (0, π) → S1 : (r, θ) 7→ (r cos θ, r sin θ, 0) be a chart for the upper
half plane S1. Let f : R>0 × (0, π)→ S2 be defined by

f(r, θ) =

(
r√
2

cos
√

2θ,
r√
2

sin
√

2θ,
r√
2

)
.

Then g = f ◦X−1 is a well-defined smooth map from S1 to S2. It remains to check that g
is a local isometry. We have

Xr = (cos θ, sin θ, 0)

Xθ = (−r sin θ, r cos θ, 0)

〈Xr, Xr〉 = 1

〈Xr, Xθ〉 = 0

〈Xθ, Xθ〉 = r2

while

dg(Xr) =
∂f

∂r
=

(
1√
2

cos
√

2θ,
1√
2

sin
√

2θ,
1√
2

)
dg(Xθ) =

∂f

∂θ
=
(
−r sin

√
2θ, r cos

√
2θ, 0

)
〈dg(Xr), dg(Xr)〉 = 1

〈dg(Xr), dg(Xθ)〉 = 0

〈dg(Xθ), dg(Xθ)〉 = r2.

It follows that g is indeed a local isometry.

To find the mean and Gauss curvatures of S2. We can use the standard chart

Y : (r, θ) 7→ (r cos θ, r sin θ, r)

or f defined above or many others. Let us use the first one. We have

Yr = (cos θ, sin θ, 1)

Yθ = (−r sin θ, r cos θ, 0)

Yr × Yθ = (−r cos θ,−r sin θ, r)

N =
1√
2

(− cos θ,− sin θ, 1) (upward)

S(Yr) = 0 · Yr + 0 · Yθ

S(Yθ) =
1√
2

(− sin θ, cos θ, 0) = 0 · Yr +
1√
2r
Yθ

[S]{Yr,Yθ} =

(
0 0
0 1√

2r

)
H =

1√
2r

K = 0

Remark. The above map is just the mathematical description of a childhood craft, namely
making a cone from a sheet of circular sector. Recall that we form the cone simply by gluing
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the two boundary half-lines of the sector together. In our case, in order to form S2, we
in fact need a sector with larger angle so that it contains the ray θ =

√
2π which is to be

glued to the positive x-axis.

7. (2 points) Recall from Q2 above that the helicoid S1 and the catenoid S2 are given by

X(u, v) = (v cosu, v sinu, u), (u, v) ∈ R2,

Y (u, v) = (cosh v cosu, cosh v sinu, v), (u, v) ∈ (0, 2π)× R

respectively. Note that X is a diffeomorphism onto the whole surface S1 (while Y misses a
catenary curve). To define a local ismoetry from the helicoid to the catenoid, it suffices to
find a map φ : R2 → S2 and show that the “pull-backs” of the first fundamental forms of

S1 via X and S2 via φ are the same. We have already found the former: g =

(
1 + v2 0

0 1

)
.

For the latter, we let

φ : R2 → S2 : (u, v) 7→ (
√

1 + v2 cosu,
√

1 + v2 sinu, sinh−1 v).

Let ψ = φ ◦X−1 : S1 → S2. We have

dψ(Xu) =
∂φ

∂u
= (−

√
1 + v2 sinu,

√
1 + v2 cosu, 0)

dψ(Xv) =
∂φ

∂v
=

(
v√

1 + v2
cosu,

v√
1 + v2

sinu,
1√

1 + v2

)
〈dψ(Xu), dψ(Xu)〉 = 1 + v2

〈dψ(Xu), dψ(Xv)〉 = 0

〈dψ(Xv), dψ(Xv)〉 = 1.

It follows that ψ is a local isometry from the helicoid to the catenoid.

However, they are not globally isometric because the helicoid is contractible (as it is home-
omorphic to R2) while the catenoid is homotopy equivalent to the circle which has non-zero
fundamental group. There is another method which is provided by two of you: From the
calculations in Q2, we see that the sets of points p in the helicoid and in the catenoid such
that K(p) = −1 are {(0, 0, z)| z ∈ R} and {(x, y, 0)| x2 + y2 = 1} respectively. If the two
surfaces are globally isometric, then these two sets are homeomorphic. However, this is not
true because one is an infinite straight line which is non-compact while the other one is a
circle which is compact.

Remark 1. The map ψ : S1 → S2 is the universal covering with deck transformations
freely generated by the translation by 2π units upward.

Remark 2. Concerning the last part of this question which is about whether the two
surfaces are globally isometric or not, I could only think of the first method which is
beyond the scope of this course, so originally I intended not to grade this part. But thanks
to our two classmates who provided such a nice solution, I finally decided to count this
part which is now worth 0.5 points.
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