
MATH 4030 Differential Geometry
Homework 3

Suggested solutions

1. (1 point)
Solution 1. Let S ′ = {(f(u) cos v, f(u) sin v, g(u))| u ∈ R, v ∈ [−π, π)}. Then S is open
in S ′. We show that S ′ is the zero set of a smooth function of which 0 is a regular value,
and hence S ′, as well as S, is a surface. To construct the function, observe that g′ > 0
implies that g is a diffeomorphism onto an open interval I. Let F : {(x, y, z)| x2 + y2 >
0, z ∈ I} → R be defined by

F (x, y, z) =
√
x2 + y2 − f(g−1(z)).

Then

∇F (x, y, z) =

[
x√

x2 + y2
,

y√
x2 + y2

,−f
′(g−1(z))

g′(g−1(z))

]
,

and hence every real number is a regular value of F (we call such function a submersion).
This shows that S is a surface.

Now recall that ∇F is normal to S. Observe also that the (x, y)-components of ∇F are
multiple of (x, y), and hence that the line through (x, y, z) parallel to ∇F passes through
the z-axis.

Solution 2. Consider the function X, we show that it is a parametrization. We have

Xu = (f ′(u) cos v, f ′(u) sin v, g′(u))

Xv = (−f(u) sin v, f(u) cos v, 0)

Xu ×Xv = (−f(u)g′(u) cos v,−f(u)g′(u) sin v, f(u)f ′(u))

Since f, g′ > 0, we have |Xu ×Xv| = f
√
f ′2 + g′2 6= 0, and hence dX is one-to-one. Now

comes the injectivity: Suppose X(u1, v1) = X(u2, v2), then

g(u1) = g(u2)

f(u1)eiv1 = f(u2)eiv2

Since g′(u) > 0 ∀u ∈ R, we have u1 = u2, and so

eiv1 = eiv2

v1 = v2.

As for showing that X has continuous inverse (homeomorphism), we cheat by using the
fact that if S has been proved to be a surface (see solution 1), then any X such that (1) X
is injective and (2) dX is one-to-one everywhere is a chart. This basically follows from the
inverse function theorem. Hence X is a chart of S.

Now our chart X allows us to show the last thing: all the normal lines of S pass through
the z-axis. To do this, recall that

w := Xu ×Xv = (−f(u)g′(u) cos v,−f(u)g′(u) sin v, f(u)f ′(u))

is normal to S. Then observe that

X(u, v) +
1

g′(u)
w =

(
0, 0, g(u) +

f(u)f ′(u)

g′(u)

)
.
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This means that the normal line of S at X(u, v) pass through a point in the z-axis, as was
to be shown.

2. (1 point)

(a) Let X : U → V ⊆ S be any chart of S. Consider the function

f ◦X : U → R : (u, v) 7→
√
〈X(u, v)− p0, X(u, v)− p0〉.

Then f ◦X is smooth if and only if 〈X(u, v)− p0, X(u, v)− p0〉 > 0 for any (u, v) ∈ U .
The latter is true because of the assumption po 6∈ S, and so we get the first half of (a).

Let ζ ∈ TpS. Choose α : (−ε, ε)→ S such that α(0) = p and α′(0) = ζ. Then

(f ◦ α)(t) =
√
〈α(t)− p0, α(t)− p0〉

dfp(ζ) = (f ◦ α)′(0) =
1

|α(0)− p0|
〈α′(0), α(0)− p0〉

=
1

|p− p0|
〈ζ, p− p0〉.

It follows that dfp ≡ 0 if and only if 〈ζ, p− p0〉 = 0 for any ζ ∈ TpS which is equivalent
to p− p0 being normal to S at p.

(b) To avoid confusion, I change v in question to θ. Let X : U → V ⊆ S be any chart of
S. Then it is clear that the function

h ◦X : U → R : (u, v) 7→ 〈X(u, v), θ〉

is smooth on U . This proves the first half of (b).

Let ζ ∈ TpS. Choose α : (−ε, ε)→ S such that α(0) = p and α′(0) = ζ. Then

(h ◦ α)(t) = 〈α(t), θ〉
dhp(ζ) = (h ◦ α)′(0)

= 〈α′(0), θ〉
= 〈ζ, θ〉.

It follows that dhp ≡ 0 if and only if 〈ζ, θ〉 = 0 for any ζ ∈ TpS which is equivalent to
θ being normal to S at p.

3. (1.5 points)

(a) The idea is to first prepare a plane normal to a that is far away from S. Then translate
this plane towards S until it touches S for the first time. The point of tangency will
be the point we are looking for.

To put this idea into mathematical language, we “parametrize” all planes normal to a
by the linear map h : p 7→ 〈p, a〉. The level sets of this map are exactly the set of all
planes normal to a. The remote plane that we prepared in the first place is h−1(c0)
for any large c0 > 0. Translating this plane towards S means we consider the family
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h−1(c) of planes as c decreases starting from c0. The first moment when the plane
touches S is the moment when h−1(c) first intersects S which is the same as when c
first enters h(S).

Now it is clear that this happens exactly when h|S attains maximum, which is guaran-
teed by the compactness of S. Let p0 be a point at which h attains maximum. Then
p0 is a critical point of h|S, and hence by Q2b above, we conclude that a is normal to
S at p0. In other words, the normal line to S at p0 is parallel to a, as desired.

(b) Suppose all the normal lines of S are parallel to a. Then the function h|S with h
defined in part (a) has zero derivative everywhere. Since S is connected, it follows that
h|S is a constant function, in other words, S is contained in some level set of h which
is a plane.

Remark 1. Note that we don’t need the compactness assumption for part (b). If S is
compact, then it must be a surface-with-boundary such as disk and annulus.

Remark 2. In part (b), or elsewhere, some of you have used the fact that if S is connected
(i.e. S cannot be covered by two disjoint non-empty open subsets), then every pair of points
in S can be joined by a SMOOTH curve (in fact, by a smooth arc). It should be noted
that this fact is non-trivial. However, since its proof does not involve anything important
to this course, you are welcome to use it (without giving a proof) whenever you like.

4. (1 point)

(a) Apply HW3 suggested ex. Q3 (whose solution can be found in Tut5) to f and to f−1.
(A diffeomorphism is a local diffeomorphism!)

(b) First we recall the following two equivalent definitions of an orientation-preserving
(resp. orientation-reversing) diffeomorphism f : S1 → S2:

(A) For each p ∈ S1, there exists a pair of linearly independent tangent vectors ζ, θ ∈

TpS1 such that G1(p) =
ζ × θ
|ζ × θ|

and G2(f(p)) = (resp.−)
dfp(ζ)× dfp(θ)
|dfp(ζ)× dfp(θ)|

. (G1 and

G2 are fixed Gauss maps for S1 and S2 respectively.)

(B) For each pair of charts Xi : Ui → Vi ⊆ Si, i = 1, 2 belonging to an atlas Φi

determining the given orientation on Si, X
−1
2 ◦ f ◦ X1 has positive (resp. nega-

tive) Jacobian at every point (u, v) ∈ U1 at which this map is well-defined (i.e.
f(X1(u, v)) ∈ V2).

Recall also that the correspondence between G and Φ is as follows:

• Given G, we take Φ to be the collection of all charts X : U → V ⊆ S such that

G =
Xu ×Xv

|Xu ×Xv|
.

• Given Φ, then the unit normal vector field
Xu ×Xv

|Xu ×Xv|
is consistent among different

choices of charts X ∈ Φ. Take G to be the well-defined map glued by these vector
fields.
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(To see why the two definitions are equivalent and why the correspondence makes
sense, we may need the results in Q5 below and Tut5.)

Solution 1. (More comprehensible but less detailed) Let p ∈ S2 and N be the outward
normal vector field on S2. Take orthonormal basis ζ, θ of TpS2 such that Np = ζ × θ.
Then Nf(p) = N−p = −Np = −ζ × θ (note that as subspaces of R3, TpS2 = Tf(p)S2).
But dfp(ζ) = −ζ and dfp(θ) = −θ so that dfp(ζ)×dfp(θ) = ζ×θ = −Nf(p). (A) implies
f is an orientation-reversing diffeomorphism.

Solution 1’. (Less comprehensible but more detailed) Now, let f be the antipodal
map on S1 = S2 = S2. Recall (say from Tut4) that the unit sphere S2 can be covered
by 6 graphical charts (2 for each coordinate plane). We consider one of them X :
{u2 + v2 < 1} → S2 ⊆ R3 : (u, v) 7→ (u, v,

√
1− u2 − v2). Then

df(Xu) =

(
−1, 0,

u√
1− u2 − v2

)
df(Xv) =

(
0,−1,

v√
1− u2 − v2

)
.

Note that
Xu ×Xv

|Xu ×Xv|
= G (where we take our Gauss map G to be the outward normal

S2 3 (x, y, z) 7→ (x, y, z)), but

df(Xu)× df(Xv) =

(
u√

1− u2 − v2
,

v√
1− u2 − v2

, 1

)
so that

df(Xu)× df(Xv)

|df(Xu)× df(Xv)|
= (u, v,

√
1− u2 − v2) = −Gf(X(u,v))

(note that f(X(u, v)) = (−u,−v,−
√

1− u2 − v2)). It follows that (A) for orientation-
reversing diffeomorphism is satisfied over the region S2 ∩ {z > 0}. Similarly, (A) is
satisfied over the other five regions similarly defined which cover the whole S2 alto-
gether.

5. (1 point) Since X = X ◦(X−1◦X) = X ◦ψ, by chain rule, we have dX = dX ◦dψ. Plugging
the column vector a = (a1, a2)T into both sides, we get

a1
∂X

∂u
+ a2

∂X

∂v
= dX(a) = dX(dψ(a)) = dX

[(
∂ū
∂u

∂ū
∂v

∂v̄
∂u

∂v̄
∂v

)(
a1

a2

)]
.

The LHS is also equal to b1
∂X

∂ū
+ b2

∂X

∂v̄
which is equal to dX

[(
b1

b2

)]
. By the injectivity

of dX, we have (
b1

b2

)
=

(
∂ū
∂u

∂ū
∂v

∂v̄
∂u

∂v̄
∂v

)(
a1

a2

)
.
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6. (1 point) Let X : (0, 2π)× (0, 2π)→ S −∞:

(θ, ϕ) 7→ ((a+ r cos θ) cosϕ, (a+ r cos θ) sinϕ, r sin θ)

be a parametrization of S where ∞ denotes the union of two circles which has measure 0.
Then

Xθ = (−r sin θ cosϕ,−r sin θ sinϕ, r cos θ)

Xϕ = (−(a+ r cos θ) sinϕ, (a+ r cos θ) cosϕ, 0)

gθθ = 〈Xθ, Xθ〉 = r2

gθϕ = 〈Xθ, Xϕ〉 = 0

gϕϕ = 〈Xϕ, Xϕ〉 = (a+ r cos θ)2

The area of S is equal to ∫ 2π

0

∫ 2π

0

√
det(gij) dθdϕ

=

∫ 2π

0

∫ 2π

0

r(a+ r cos θ) dθdϕ

= 4π2ar.

7. (1.5 points) Consider the chart X : R2 → R3 : (u, v) 7→ (u, v, f(u, v)) where f is smooth.
Then

Xu = (1, 0, fu)

Xv = (0, 1, fv)

Xuu = (0, 0, fuu)

Xvv = (0, 0, fvv)

Xuv = (0, 0, fuv)

Xu ×Xv = (−fu,−fv, 1)

N =
Xu ×Xv

|Xu ×Xv|
=

(−fu,−fv, 1)√
f 2
u + f 2

v + 1
(upward normal)

g =

(
〈Xu, Xu〉 〈Xu, Xv〉
〈Xv, Xu〉 〈Xv, Xv〉

)
=

(
1 + f 2

u fufv
fufv 1 + f 2

v

)

A =

(
〈N,Xuu〉 〈N,Xuv〉
〈N,Xvu〉 〈N,Xvv〉

)
=

 fuu√
f2u+f2v+1

fuv√
f2u+f2v+1

fuv√
f2u+f2v+1

fvv√
f2u+f2v+1



[S]{Xu,Xv} = g−1A =
1√

f 2
u + f 2

v + 1
3

(
(1 + f 2

v )fuu − fufvfuv (1 + f 2
v )fuv − fufvfvv

(1 + f 2
u)fuv − fufvfuu (1 + f 2

u)fvv − fufvfuv

)
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([S]{Xu,Xv} can also be found by expressing −∂uN and −∂vN in terms of Xu and Xv.)

H = tr(g−1A)

=
(1 + f 2

v )fuu − 2fufvfuv + (1 + f 2
u)fvv

(f 2
u + f 2

v + 1)
3
2

K =
detA

det g

=

fuufvv−f2uv
(f2u+f2v+1)

(f 2
u + f 2

v + 1)

=
fuufvv − f 2

uv

(f 2
u + f 2

v + 1)2

S1 = {(x, y, z) ∈ R3| z = x2 + y2}:
• Let X : R2 → S1 : (u, v) 7→ (u, v, u2 + v2) be a parametrization of S1. Let
f(u, v) = u2 + v2. We have

fu = 2u, fv = 2v

fuu = 2, fvv = 2, fuv = 0

•

H =
(1 + f 2

v )fuu − 2fufvfuv + (1 + f 2
u)fvv

(f 2
u + f 2

v + 1)
3
2

=
2(4u2 + 4v2 + 2)

(4u2 + 4v2 + 1)
3
2

=
4(2u2 + 2v2 + 1)

(4u2 + 4v2 + 1)
3
2

•

K =
fuufvv − f 2

uv

(f 2
u + f 2

v + 1)2

=
4

(4u2 + 4v2 + 1)2

• The second fundamental form A at p = (0, 0, 0) is

(
2 0
0 2

)
.

• The matrix representing Sp with respect to the ordered basis {Xu, Xv} is

g−1A =

(
2 0
0 2

)
.

• Principal curvatures = eigenvalues of Sp:

κ1 = κ2 = 2
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• Principal directions = (normalized) eigenvectors of Sp
= {(a, b, 0) ∈ R3| a2 + b2 = 1}.

S2 = {(x, y, z) ∈ R3| z = x2 − y2}:
• Let X : R2 → S1 : (u, v) 7→ (u, v, u2 − v2) be a parametrization of S1. Let
f(u, v) = u2 − v2. We have

fu = 2u, fv = −2v

fuu = 2, fvv = −2, fuv = 0

•

H =
(1 + f 2

v )fuu − 2fufvfuv + (1 + f 2
u)fvv

(f 2
u + f 2

v + 1)
3
2

=
8(v2 − u2)

(4u2 + 4v2 + 1)
3
2

•

K =
fuufvv − f 2

uv

(f 2
u + f 2

v + 1)2

= − 4

(4u2 + 4v2 + 1)2

• The second fundamental form A at p = (0, 0, 0) is

(
2 0
0 −2

)
.

• The matrix representing Sp with respect to the ordered basis {Xu, Xv} is

g−1A =

(
2 0
0 −2

)
.

• Principal curvatures = eigenvalues of Sp:

κ1 = 2, κ2 = −2

• Principal directions = (normalized) eigenvectors of Sp:

ν1 = ± 1 ·Xu + 0 ·Xv

|1 ·Xu + 0 ·Xv|
= (±1, 0, 0)

ν2 = ± 0 ·Xu + 1 ·Xv

|0 ·Xu + 1 ·Xv|
= (0,±1, 0)

8. (1 point) Observe that any symmetric 2 × 2 real matrix A =

(
a b
b c

)
with zero trace and

zero determinant must be zero:{
a+ c = 0

ac− b2 = 0
=⇒

{
a+ c = 0

a2 + b2 = 0
=⇒ a = b = c = 0.
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The same is thus true for linear operators on R2 symmetric with respect to an inner product.

Now apply this to the shape operator S = −dNp : TpS → TpS for each point p in our
surface S. Recall that H and K are the trace and the determinant of S respectively, and
that S is symmetric with respect to the inner product induced from the standard one on
R3. That H and S are both identically zero implies that S is identically zero, by the above
fact. In other words, the Gauss map N is constant (assuming S is connected), and hence
the assumption in Q3(b) above is satisfied, proving that S is contained in a plane.

9. (1 point) First note that ellipsoid, similar to sphere, can be covered by six graphical charts.
Recall from the solution to Q7 that for the graphical surface defined by a function f , we
have the following formula for its Gauss curvature:

K =
fuufvv − f 2

uv

(f 2
u + f 2

v + 1)2
.

Therefore, it suffices to show that fuufvv − f 2
uv > 0 for

f :

{
u2

a2
+
v2

b2
< 1

}
→ R : (u, v) 7→ c

√
1− u2

a2
− v2

b2
.

(Other five are handled similarly.) This can be checked by direct calculation which I

leave to you. Alternatively, write f as c · g ◦ A where g : (x, y) 7→
√

1− x2 − y2 and
A : (u, v) 7→ (u/a, v/b). Then the Hessians of f and g are related by the following equality:

Hess(f)(u,v) = cAT ◦Hess(g)(Au,Av) ◦ A,

where the linear map A is regarded as a 2× 2 matrix. Now it is clear that

fuufvv − f 2
uv = det(Hess(f)) =

c2

a2b2
det(Hess(g)).

Of course, we can check by computation that det(Hess(g)) > 0 so that the result follows,
but this is unnecessary because this expression corresponds to the numerator of the Gauss
curvature of the unit sphere which we know is positive everywhere. The desired result thus
follows from this observation.
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