MATH 4030 Differential Geometry Homework 2 Suggested solutions

1. (1 point)

(a)
$$\alpha'(\theta) = (r'(\theta)\cos\theta - r(\theta)\sin\theta, r'(\theta)\sin\theta + r(\theta)\cos\theta)$$

 $|\alpha'(\theta)| = \sqrt{(r'(\theta)\cos\theta - r(\theta)\sin\theta)^2 + (r'(\theta)\sin\theta + r(\theta)\cos\theta)^2} = \sqrt{r(\theta)^2 + r'(\theta)^2}$
 $L_a^b(\alpha) = \int_a^b \sqrt{r(\theta)^2 + r'(\theta)^2} d\theta$

(b) By HW1 Q6, we have

$$\kappa(\theta) = \frac{\det\left(\alpha'(\theta), \alpha''(\theta)\right)}{|\alpha'(\theta)|^3}$$

$$\alpha''(\theta) = (r''(\theta)\cos\theta - 2r'(\theta)\sin\theta - r(\theta)\cos\theta, r''(\theta)\sin\theta + 2r'(\theta)\cos\theta - r(\theta)\sin\theta)$$

$$\det\left(\alpha'(\theta),\alpha''(\theta)\right) = \det\left(\begin{array}{ccc} r'c-rs & r''c-2r's-rc\\ r's+rc & r''s+2r'c-rs \end{array}\right) = 2r'(\theta)^2 - r(\theta)r''(\theta) + r(\theta)^2$$

Hence

$$\kappa(\theta) = \frac{2r'(\theta)^2 - r(\theta)r''(\theta) + r(\theta)^2}{[r'(\theta)^2 + r(\theta)^2]^{3/2}}$$

2. (2 points)

(a) (\Longrightarrow)

Suppose α lies on a plane. Let p be a point on the plane and v be a unit vector normal to the plane. Then

$$\begin{aligned} \langle \alpha(s) - p, v \rangle &\equiv 0\\ \langle T(s), v \rangle &= \langle \alpha'(s), v \rangle &\equiv 0\\ \kappa(s) \langle N(s), v \rangle &= \langle \alpha''(s), v \rangle &\equiv 0. \end{aligned}$$

Since $\kappa(s) > 0$ for all $s \in I$, we have $\langle N(s), v \rangle = 0$ for all $s \in I$. It follows that $B(s) = \pm v$ for all $s \in I$, i.e. B(s) is a constant vector. Therefore

$$\tau(s) = \langle B'(s), N(s) \rangle = 0$$
 for all $s \in I$.

 (\Leftarrow)

If $\tau(s) \equiv 0$, then B'(s) = 0 for all $s \in I$, and hence B(s) is a constant vector. Let v = B(s). Consider $\langle \alpha(s) - \alpha(0), v \rangle$ (just assume $0 \in I$). We have

$$\langle \alpha(s) - \alpha(0), v \rangle' = \langle \alpha'(s), v \rangle = \langle T(s), B(s) \rangle = 0$$
 for all $s \in I$.

Hence $\langle \alpha(s) - \alpha(0), v \rangle = c$ for some constant c. Put s = 0, we get $c = \langle \alpha(0) - \alpha(0), v \rangle = 0$. Therefore, $\alpha(s)$ is contained in the plane passing through $\alpha(0)$ normal to v.

(b) (\Longrightarrow)

If α is an arc of a circular helix or a circle, then by a rigid motion, we can assume that

$$\alpha(s) = \left(r\cos\left(\frac{s}{\sqrt{r^2 + c^2}}\right), r\sin\left(\frac{s}{\sqrt{r^2 + c^2}}\right), \frac{cs}{\sqrt{r^2 + c^2}}\right)$$

for some constants r and c. Note that α is p.b.a.l. Then

$$\begin{aligned} \alpha'(s) &= \left(-\frac{r}{\sqrt{r^2 + c^2}} \sin\left(\frac{s}{\sqrt{r^2 + c^2}}\right), \frac{r}{\sqrt{r^2 + c^2}} \cos\left(\frac{s}{\sqrt{r^2 + c^2}}\right), \frac{c}{\sqrt{r^2 + c^2}}\right) \\ \alpha''(s) &= \left(-\frac{r}{r^2 + c^2} \cos\left(\frac{s}{\sqrt{r^2 + c^2}}\right), -\frac{r}{r^2 + c^2} \sin\left(\frac{s}{\sqrt{r^2 + c^2}}\right), 0\right) \\ \kappa(s) &= |\alpha''(s)| = \frac{r}{r^2 + c^2} \\ N(s) &= \left(-\cos\left(\frac{s}{\sqrt{r^2 + c^2}}\right), -\sin\left(\frac{s}{\sqrt{r^2 + c^2}}\right), 0\right) \\ B(s) &= \left(\frac{c}{\sqrt{r^2 + c^2}} \sin\left(\frac{s}{\sqrt{r^2 + c^2}}\right), -\frac{c}{\sqrt{r^2 + c^2}} \cos\left(\frac{s}{\sqrt{r^2 + c^2}}\right), \frac{r}{\sqrt{r^2 + c^2}}\right) \\ B'(s) &= \left(\frac{c}{r^2 + c^2} \cos\left(\frac{s}{\sqrt{r^2 + c^2}}\right), \frac{c}{r^2 + c^2} \sin\left(\frac{s}{\sqrt{r^2 + c^2}}\right), 0\right) \\ \tau(s) &= -\frac{c}{r^2 + c^2} \end{aligned}$$

It follows that κ and τ are constant.

(\Leftarrow) Suppose κ and τ are constant. Let $r = \frac{\kappa}{\kappa^2 + \tau^2}$ and $c = -\frac{\tau}{\kappa^2 + \tau^2}$. Consider $\beta(s) = \left(r \cos\left(\frac{s}{\sqrt{r^2 + c^2}}\right), r \sin\left(\frac{s}{\sqrt{r^2 + c^2}}\right), \frac{cs}{\sqrt{r^2 + c^2}}\right)$ By the above calculations, we have $\kappa_\beta = \kappa$ and $\tau_\beta = \tau$. Hence, by the Fundamental

By the above calculations, we have $\kappa_{\beta} = \kappa$ and $\tau_{\beta} = \tau$. Hence, by the Fundamental Theorem of Space Curves, $\beta = \varphi \circ \alpha$ for some orientation-preserving rigid motion φ . It follows that α is an arc of a circular helix or a circle.

3. (1 point)

$$\begin{aligned} \alpha'(t) &= |\alpha'(t)|T(t) \\ \alpha''(t) &= \frac{d|\alpha'(t)|}{dt}T(t) + |\alpha'(t)|\frac{ds}{dt}\frac{dT}{ds} \\ &= \frac{d|\alpha'(t)|}{dt}T(t) + |\alpha'(t)|^2\kappa(t)N(t) \\ \alpha'(t) \times \alpha''(t) &= |\alpha'(t)|^2\kappa(t)\alpha'(t) \times N(t) \\ &= |\alpha'(t)|^3\kappa(t)B(t) \\ \kappa(t) &= \frac{|\alpha'(t) \times \alpha''(t)|}{|\alpha'(t)|^3} \\ B(t) &= \frac{\alpha'(t) \times \alpha''(t)}{|\alpha'(t) \times \alpha''(t)|} \\ \alpha'''(t) &= \frac{d^2|\alpha'(t)|}{dt^2}T(t) + \frac{d|\alpha'(t)|}{dt}|\alpha'(t)|\kappa(t)N(t) \\ &+ \frac{d(|\alpha'(t)|^2\kappa(t))}{dt}N(t) \\ &+ |\alpha'(t)|^3\kappa(t)(-\kappa(t)T(t) - \tau(t)B(t)) \\ \kappa(t) &= -\frac{\langle B(t), \alpha'''(t)\rangle}{|\alpha'(t)|\alpha'(t)|^3} \\ &= -\frac{\langle \alpha'(t) \times \alpha''(t)|^2}{|\alpha'(t) \times \alpha''(t)|^2} \end{aligned}$$

4. (2 points) Recall that for a curve $\alpha : I \to \mathbb{R}^3$ p.b.a.l. with $\kappa(s) > 0$ for all $s \in I$, we have

$$\begin{bmatrix} T'\\N'\\B' \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0\\-\kappa & 0 & -\tau\\0 & \tau & 0 \end{bmatrix} \begin{bmatrix} T\\N\\B \end{bmatrix}.$$

If $\tau(s) \equiv c\kappa(s)$ for a constant c, then the matrix in the above equation is a (possibly non-constant) scalar multiple of a constant matrix, namely we can write it as $\kappa(s)A$ where

$$A = \left[\begin{array}{rrrr} 0 & 1 & 0 \\ -1 & 0 & -c \\ 0 & c & 0 \end{array} \right].$$

Observe that A is singular for any values of c because $[c \ 0 \ -1]A = 0$. Therefore, if we let u(s) = cT(s) - B(s), then

$$u'(s) = \begin{bmatrix} c & 0 & -1 \end{bmatrix} \begin{bmatrix} T' \\ N' \\ B' \end{bmatrix}$$
$$= \begin{bmatrix} c & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & -\tau \\ 0 & \tau & 0 \end{bmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}$$
$$= \kappa(s) \begin{bmatrix} c & 0 & -1 \end{bmatrix} A \begin{bmatrix} T & N & B \end{bmatrix}^T = 0,$$

and hence u is constant. This proves (\Leftarrow) after normalizing u to get v.

For (\Longrightarrow) , assume $\langle \alpha'(s), v \rangle \equiv c'$ where c' is constant. We see in the last part that the vector v, when expressed with respect to the frame $\{T(s), N(s), B(s)\}$, should have constant coefficients. Indeed, this is the case because $\langle v, T \rangle = \langle v, \alpha' \rangle = c', \langle v, N \rangle = \frac{1}{\kappa} \langle v, \alpha' \rangle' = 0$ and $\langle v, B \rangle' = \tau \langle v, N \rangle = 0$. Let c'' be the last constant, $\langle v, B \rangle$. Then v = c'T + c''B. Note that |v| = 1 implies that c' and c'' cannot be both zero. Now differentiating the last equality, we get $0 = c'T' + c''B' = (c'\kappa + c''\tau)N$, and hence

$$c'\kappa + c''\tau \equiv 0.$$

Note that c'' cannot be zero, for otherwise c' will be zero ($: \kappa > 0$). It follows that $\tau \equiv (-\frac{c'}{c''})\kappa$. (Take $c = -\frac{c'}{c''}$.)

5. (1 point)

Solution 1. The point which causes problem is the origin $\mathbf{0} = (0, 0, 0)$. We show that there is no parametrization of S near $\mathbf{0}$ by contradiction. Suppose the contrary, then near $\mathbf{0}$, S is a graph. More precisely, there exists a neighbourhood $V \subseteq \mathbb{R}^3$ of $\mathbf{0}$ such that $S \cap V$ is equal to the graph of a function defined on a neighbourhood of (0,0) in the yz-plane (case 1), or a function defined on a neighbourhood of (0,0) in the xz-plane (case 2), or a function defined on a neighbourhood of (0,0) in the xy-plane (case 3). We argue that none of these cases is possible (using MATH1050 stuff). Let B_{ε} be the open ball in \mathbb{R}^2 with centre (0,0) and radius $\varepsilon > 0$.

- (case 1) Note that for all (a fortiori, there is) $(y, z) \in B_{\varepsilon} \cap \{|z| > |y|\}$, there are two points of S which project down to (y, z). They are $(\pm \sqrt{z^2 y^2}, y, z)$. Since any neighbourhood of (0, 0) contains a $B_{\varepsilon} \cap \{|z| > |y|\}$, it follows that this case is impossible.
- (case 2) Similar to case 1.
- (case 3) Note that for all (a fortiori, there is) $(x, y) \in B_{\varepsilon} \{0\}$, there are two points of S which project down to (x, y). They are $(x, y, \pm \sqrt{x^2 + y^2})$. Since any neighbourhood of (0, 0)contains a $B_{\varepsilon} - \{0\}$, it follows that this case is impossible.

Solution 2. The following is a purely topological proof. We show that there is no open neighbourhood of **0** in S homeomorphic to \mathbb{R}^2 . Suppose there is such neighbourhood, say U. Being homeomorphic to \mathbb{R}^2 , we see that after removing **0** from U, U remains

connected. However, being a neighbourhood of $\mathbf{0}$ in S, we see that after the removal, U is **not** connected! This follows from

$$U - \{\mathbf{0}\} = U \cap \{z > 0\} \sqcup U \cap \{z < 0\}$$

where each set in RHS is non-empty (for example, they contain $(\frac{3}{n}, \frac{4}{n}, \pm \frac{5}{n})$ for some large n).

6. (1 point) Let $p \in S$, then $\exists U \subseteq \mathbb{R}^2, V \subseteq S$ with V being a connected neighbourhood of p and a parametrization $X : U \to V$.

Consider the function $f: U \to \mathbb{R}: (u, v) \mapsto \langle X(u, v) - p_0, X(u, v) - p_0 \rangle$. We have

$$\frac{\partial f}{\partial u} = 2 \left\langle \frac{\partial X}{\partial u}, X - p_0 \right\rangle$$
$$\frac{\partial f}{\partial v} = 2 \left\langle \frac{\partial X}{\partial v}, X - p_0 \right\rangle.$$

By assumption, $\frac{\partial f}{\partial u} = \frac{\partial f}{\partial v} = 0$. It follows that f is a constant function, which means that every point of V has a fixed distance, say r, from p_0 . Since S is connected, the above is true for every point of the entire surface S. In other words, S is contained in a sphere with centre p_0 and radius r.

7. (1 point) Let y be a point in \mathbb{R}^3 . Since S is compact, there is a point x_{max} in S such that

$$|y - x| \leqslant |y - x_{max}|$$

for all $x \in S$.

Lemma. The vector $y - x_{max}$ is orthogonal to S at x_{max} . Proof: Exercise. (Hint: See HW1 Q3 and HW2 Q6.)

Now consider the continuous map $F : S \times S \to \mathbb{R} : (p,q) \mapsto |p-q|$. Since $S \times S$ is compact, F attains maximum at some point (p_0, q_0) . By applying the lemma twice to $(y, x_{max}) = (p_0, q_0)$ and to $(y, x_{max}) = (q_0, p_0)$, we see that the vector $p_0 - q_0$ is orthogonal to S at p_0 and at q_0 . Note that p_0 cannot be equal to q_0 , for otherwise F is the zero map, and hence S is reduced to a point, in contradiction to the fact that S is a surface. Our desired straight line ℓ will then be the one passing through p_0 and q_0 .

8. (1 point)

Proof that S_i , i = 1, 2, 3 is a surface:

It suffices to prove the result for S_1 . Let $F : \mathbb{R}^3 \to \mathbb{R} : (x, y, z) \mapsto x^2 + y^2 + z^2 - ax$. Then $S_1 = F^{-1}(0)$. To prove that this subset is a surface, it is sufficient (WARNING: not necessary, see HW2 suggested ex. Q5) to show that 0 is a regular value of F. To see this, pick a point $(x_0, y_0, z_0) \in F^{-1}(0)$, and consider the differential $dF(x_0, y_0, z_0) : \mathbb{R}^3 \to \mathbb{R}$ whose matrix form is given by

$$dF(x_0, y_0, z_0) = [2x_0 - a \ 2y_0 \ 2z_0].$$

Suppose (x_0, y_0, z_0) is a critical point of F. Then the above matrix is zero, i.e. $x_0 = \frac{a}{2}$, $y_0 = z_0 = 0$. But this is impossible, for otherwise, $0 = F(x_0, y_0, z_0) = (\frac{a}{2})^2 - a \cdot \frac{a}{2} = -\frac{a^2}{4}$, contradicting the fact that $a \neq 0$. Hence (x_0, y_0, z_0) is a regular point. We have shown that every point in $F^{-1}(0)$ is a regular point, hence 0 is a regular value of F, as desired.

<u>Remark.</u> Note that all the surfaces S_1, S_2 and S_3 are spheres. What are their centres and radii?

Proof that any pair of S_1, S_2 and S_3 intersect orthogonally:

It is sufficient to prove the result for the pair S_1 and S_2 . We are going to show that for any $p = (x_0, y_0, z_0) \in S_1 \cap S_2$, the normal lines to the tangent planes T_pS_1 and T_pS_2 are orthogonal. By Tut. 4, we know that these normal lines are given by the gradients of the defining functions for S_1 and for S_2 respectively. According to the last part, they are

$$[2x_0 - a \ 2y_0 \ 2z_0]$$
 and $[2x_0 \ 2y_0 - b \ 2z_0]$

respectively. Hence their inner product is

$$2x_0(2x_0 - a) + 2y_0(2y_0 - b) + 4z_0^2$$

= $2(x_0^2 + y_0^2 + z_0^2 - ax_0) + 2(x_0^2 + y_0^2 + z_0^2 - by_0)$
= $0 \quad \because p \in S_1 \cap S_2.$

<u>Remark.</u> An intuitive "proof" is the following: Observe that the origin **0** is an intersection point of S_1 and S_2 , and the tangent planes are just the coordinate planes so that the orthogonality can be easily proved. For a general intersection point p, just argue that there is an isometry of \mathbb{R}^3 fixing S_1 and S_2 , and sending **0** to p.