MATH 4030 Differential Geometry Homework 1 Suggested solutions

1. (1 point) Let $\alpha: I \to \mathbb{R}$ be a curve Let $\phi: \mathbb{R}^3 \to \mathbb{R}^3$ be rigid motion, then

$$\phi(x) = Ax + b$$
 where $A \in O(3), b \in \mathbb{R}^3$

Since $A \in O(3)$, |Ax| = |x| for any $x \in \mathbb{R}^3$ as

$$\langle Ax, Ax \rangle = x^T A^T Ax = x^T x = \langle x, x \rangle$$

$$L_a^b(\phi \circ \alpha) = \int_a^b |(\phi \circ \alpha)'(t)| dt$$
$$= \int_a^b |A\alpha'(t)| dt$$
$$= \int_a^b |\alpha'(t)| dt$$
$$= L_a^b(\alpha)$$

2. (1 point)

Solution 1.

$$|\alpha(b) - \alpha(a)| = \int_{a}^{b} \langle \alpha'(t), \frac{\alpha(b) - \alpha(a)}{|\alpha(b) - \alpha(a)|} \rangle dt$$

$$\leq \int_{a}^{b} |\alpha'(t)| \left| \frac{\alpha(b) - \alpha(a)}{|\alpha(b) - \alpha(a)|} \right| dt$$

$$= \int_{a}^{b} |\alpha'(t)| dt$$

$$= L_{a}^{b}(\alpha)$$

Why do we write it in this way?

by Cauchy-Schwarz inequality

Solution 2.

$$|\alpha(b) - \alpha(a)| = \left| \int_{a}^{b} \alpha'(t) dt \right|$$

$$\leq \int_{a}^{b} |\alpha'(t)| dt$$

$$= L_{a}^{b}(\alpha)$$

Remark. Cauchy-Schwarz inequality has also been used in solution 2, where?

3. (1 point) Consider the function $|\alpha|^2$. Since $\alpha(t_0)$ is closest to the origin, we have $\frac{d}{dt}|\alpha|^2\Big|_{t=t_0}=0$. (For this conclusion to be true, t_0 has to be in the *interior* of the domain but this is automatic since the domain is an open interval.) Hence we get $2\langle\alpha(t_0),\alpha'(t_0)\rangle=0$. Geometrically speaking, that means the position vector $\alpha(t_0)$ is orthogonal to the velocity vector $\alpha'(t_0)$.

4. (1 point) Since ϕ is a diffeomorphism between two open intervals $I, J \subset \mathbb{R}$, ϕ is strictly monotone.

If $\phi' > 0$, then $\phi(a) = c$ and $\phi(b) = d$, and we have

$$L_a^b(\alpha \circ \phi) = \int_a^b |(\alpha \circ \phi)'(t)| dt$$

$$= \int_a^b |\alpha'(\phi(t))\phi'(t)| dt$$

$$= \int_a^b |\alpha'(\phi(t))|\phi'(t)| dt$$

$$= \int_c^d |\alpha'(\phi)| d\phi$$

$$= L_c^d(\phi)$$

If $\phi' < 0$, then $\phi(a) = d$ and $\phi(b) = c$

$$L_a^b(\alpha \circ \phi) = \int_a^b |(\alpha \circ \phi)'(t)| dt$$

$$= \int_a^b |\alpha'(\phi(t))\phi'(t)| dt$$

$$= \int_a^b |\alpha'(\phi(t))|(-\phi'(t)) dt$$

$$= -\int_d^c |\alpha'(\phi)| d\phi$$

$$= L_c^d(\phi)$$

5. (1 point) $\alpha(t) = (ae^{bt}\cos t, ae^{bt}\sin t)$ $\alpha'(t) = (ae^{bt}(b\cos t - \sin t), ae^{bt}(b\sin t + \cos t))$ $|\alpha'(t)| = ae^{bt}\sqrt{b^2 + 1}$

$$S(t) = \int_{t_0}^{t} ae^{bu} \sqrt{b^2 + 1} \, du$$
$$= \frac{a\sqrt{b^2 + 1}}{b} \left(e^{bt} - e^{bt_0} \right)$$

$$t(s) = S^{-1}(s) = \frac{1}{b} \ln \left(\frac{bs}{a\sqrt{b^2+1}} + e^{bt_0} \right)$$

A reparametrization of α by arc length is therefore given by

$$\beta: \left(-\infty, \frac{a\sqrt{b^2+1}}{(-b)}e^{bt_0}\right) \to \mathbb{R}^2$$

$$\beta(s) = \left(a\left(\frac{bs}{a\sqrt{b^2+1}} + e^{bt_0}\right)\cos\left[\frac{1}{b}\ln\left(\frac{bs}{a\sqrt{b^2+1}} + e^{bt_0}\right)\right], a\left(\frac{bs}{a\sqrt{b^2+1}} + e^{bt_0}\right)\sin\left[\frac{1}{b}\ln\left(\frac{bs}{a\sqrt{b^2+1}} + e^{bt_0}\right)\right]\right)$$

6. (2 points) Let β be a reparametrization of α by arc length. Then $T(s) = \beta'(s) = \frac{\alpha'(t)}{|\alpha'(t)|}$.

$$k_{\alpha}(t) = \langle \frac{d}{ds} T(s), N(s) \rangle$$

$$= \langle \frac{1}{|\alpha'(t)|} \frac{d}{dt} \left(\frac{\alpha'(t)}{|\alpha'(t)|} \right), N(t) \rangle$$

$$= \langle \frac{1}{|\alpha'(t)|} \left(\frac{\alpha''(t)}{|\alpha'(t)|} - \frac{\alpha'(t)}{|\alpha'(t)|^2} \frac{d|\alpha'(t)|}{dt} \right), N(t) \rangle$$

$$= \frac{\langle \alpha''(t), N(t) \rangle}{|\alpha'(t)|^2} \qquad (\because \langle \alpha'(t), N(t) \rangle = 0)$$

$$= \frac{\det \left(\frac{\alpha'(t)}{|\alpha'(t)|}, \alpha''(t) \right)}{|\alpha'(t)|^2} \qquad (*)$$

$$= \frac{\det \left(\alpha'(t), \alpha''(t) \right)}{|\alpha'(t)|^3}$$

* If **u** and **v** are two planar vectors and J is the rotation about the origin by 90° anti-clockwise, then

$$\langle \mathbf{u}, J\mathbf{v} \rangle = -\det(\mathbf{u}, \mathbf{v}).$$

Prove it!

7. (2 points) The existence of such δ comes from the uniform continuity theorem in mathematical analysis: Let $f:[a,b]\to\mathbb{R}^k$ be a continuous function, then given any $\varepsilon>0$ there exists $\delta>0$ such that $(x,y\in[a,b])$ and $|x-y|<\delta$ implies $|f(x)-f(y)|<\varepsilon$. Now given $\varepsilon>0$. We apply this theorem to the pair $(f=\alpha',\frac{\varepsilon}{b-a})$ so that we get the corresponding $\delta>0$. We show that this is the desired δ . Let $P=\{a=t_0< t_1<\cdots< t_n=b\}$ be a partition of [a,b] such that $|t_i-t_{i-1}|<\delta$ for all i. For each $i=1,2,\ldots,n$ and each $t\in[t_{i-1},t_i]$, applying mean value theorem to the real-valued function $x\mapsto \langle\alpha(x)-x\cdot\alpha'(t),[\alpha(t_i)-\alpha(t_{i-1})]-(t_i-t_{i-1})\alpha'(t)\rangle$ and using Cauchy-Schwarz inequality, we see that there is $c_i\in(t_{i-1},t_i)$ such that $|[\alpha(t_i)-\alpha(t_{i-1})]-(t_i-t_{i-1})\alpha'(t)|\leqslant (t_i-t_{i-1})|\alpha'(c_i)-\alpha'(t)|<\frac{t_i-t_{i-1}}{b-a}\varepsilon$. Then

$$\begin{aligned} & \left| L_{a}^{b}(\alpha, P) - \int_{a}^{b} |\alpha'(t)| \ dt \right| \\ & = \left| \sum_{i=1}^{n} \left[|\alpha(t_{i}) - \alpha(t_{i-1})| - \int_{t_{i-1}}^{t_{i}} |\alpha'(t)| \ dt \right] \right| \\ & = \left| \sum_{i=1}^{n} \frac{1}{t_{i} - t_{i-1}} \int_{t_{i-1}}^{t_{i}} \left[|\alpha(t_{i}) - \alpha(t_{i-1})| - (t_{i} - t_{i-1})| \alpha'(t)| \right] \ dt \right| \\ & \leq \sum_{i=1}^{n} \frac{1}{t_{i} - t_{i-1}} \int_{t_{i-1}}^{t_{i}} \left| \left[\alpha(t_{i}) - \alpha(t_{i-1}) \right] - (t_{i} - t_{i-1}) \alpha'(t)| \ dt \\ & < \sum_{i=1}^{n} \frac{1}{t_{i} - t_{i-1}} \int_{t_{i-1}}^{t_{i}} \frac{t_{i} - t_{i-1}}{b - a} \varepsilon \ dt \\ & = \varepsilon. \end{aligned}$$

Finally, we show that $L_a^b(\alpha) = \sup\{L_a^b(\alpha, P) | P \text{ is a partition of } [a, b]\}$. Let A be the RHS. Let P, P' be two partitions of [a, b]. We say that P is finer than P', denoted $P \prec P'$, if P' is a subset of P. In other words, P is a partition of [a, b] starting with P'. Note that the triangle inequality implies that if $P \prec P'$, then $L_a^b(\alpha, P') \leq L_a^b(\alpha, P) \leq A$. Observe also that if P' satisfies $|P'| < \delta$, then so does every P with $P \prec P'$. Now we prove the result by showing

$$\varepsilon > 0 \Longrightarrow |A - L_a^b(\alpha)| < \varepsilon.$$

Given $\varepsilon > 0$. By the definition of A, there is P such that $|A - L_a^b(\alpha, P)| < \varepsilon/2$ and by the first part of the problem we get a $\delta > 0$ such that $|P'| < \delta \Longrightarrow |L_a^b(\alpha, P') - L_a^b(\alpha)| < \varepsilon/2$. By further partitioning [a, b], we get a $P' \prec P$ such that $|P'| < \delta$ so that $|L_a^b(\alpha, P') - L_a^b(\alpha)| < \varepsilon/2$. Note that $L_a^b(\alpha, P) \leqslant L_a^b(\alpha, P') \leqslant A \Longrightarrow |A - L_a^b(\alpha, P')| < \varepsilon/2$. Hence we have $\varepsilon > 0 \Longrightarrow |A - L_a^b(\alpha)| < \varepsilon$.

8. (1 point)

 $\alpha(t) = (\sin t, \cos t + \log \tan \frac{t}{2})$

 $\alpha'(t) = (\cos t, -\sin t + \csc t) = (\cos t, \frac{\cos^2 t}{\sin t})$

 $\alpha'(t) = 0 \iff \cos t = 0 \iff t = \frac{\pi}{2}$

Hence α is regular except at $t = \frac{\pi}{2}$.

The square of the length of the segment in question is given by

$$\sin^2 t \left[1 + \left(\frac{\cos^2 t}{\sin t} \right)^2 \right]$$

$$= \sin^2 t (1 + \cot^2 t)$$

$$= \sin^2 t + \cos^2 t$$

$$= 1.$$