THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4030 Differential Geometry Solution of Assignment 6

1. We need to show that S is totally umbilical, thus by the lecture notes S is contained in a plane or a sphere.

For any $p \in S$, let $\{\kappa_1, \kappa_2\}$, $\{v_1, v_2\}$ be the corresponding eigenvalues, eigenvectors of the shape operator and $\{v_1, v_2\}$ forms an orthonormal basis of T_pS . The aim is to show that $\kappa_1 = \kappa_2$.

case1 $\kappa_1 = \kappa_2 = 0$

Then p is an umbilical point.

case2 They are not both zero, i.e,

$$
\kappa_1^2+\kappa_2^2\neq 0
$$

For any unit vector $v \in T_p S$, $v = v_1 \cos \theta + v_2 \sin \theta$ for some θ . Let $\alpha(t) : (-\epsilon, \epsilon) \to S$ be a geodesic with $\alpha(0) = p$ and $\alpha'(0) = v$. We have

$$
\alpha^{''}(t) = D_{\alpha'(t)}\alpha^{'}(t)
$$
\n
$$
= (D_{\alpha'(t)}\alpha^{'}(t))^{\top} + (D_{\alpha'(t)}\alpha^{'}(t))^{\bot}
$$
\n
$$
= < D_{\alpha'(t)}\alpha^{'}(t), N > N + \nabla_{\alpha'(t)}\alpha^{'}(t)
$$
\n
$$
= < \alpha^{'}(t), -dN(\alpha^{'}(t)) > +0
$$

Thus at $t = 0$,

$$
\alpha''(0) = <\alpha'(0), -dN(\alpha'(0))>
$$

= $v_1 \cos \theta + v_2 \sin \theta, -dN(v_1 \cos \theta + v_2 \sin \theta) >$
= $v_1 \cos \theta + v_2 \sin \theta, \kappa_1 v_1 \cos \theta + \kappa_2 v_2 \sin \theta >$
= $\kappa_1 \cos^2 \theta + \kappa_2 \sin^2 \theta$

By the assumption, κ_1 and κ_2 are not both zero. So $\alpha^{''}(0) = 0$ has at most four roots in $[0, 2\pi]$. For the other θ , $\alpha''(0) \neq 0$ and $\alpha''(t) = D_{\alpha'(t)}\alpha'(t)$, $N > N$ by the previous computation. Let $\{T_{\alpha}, N_{\alpha}, B_{\alpha}\}\)$ be the Frenet frame of α as a space curve, then N_{α} is parallel to N. By choosing the direction of N, we may assume $N_{\alpha} = N$.

Since all geodesics are plane curves, so $\tau = 0$,

$$
N_{\alpha}'(t) = -\kappa T_{\alpha} - \tau B_{\alpha} = -\kappa \alpha'(t)
$$

So we have

$$
dN(v) = dN_{\alpha}(v)
$$

= $N_{\alpha}'(0)$
= $-\kappa v$

Which means

$$
-dN(v_1 \cos \theta + v_2 \sin \theta) = \kappa(v_1 \cos \theta + v_2 \sin \theta)
$$

$$
\kappa_1 v_1 \cos \theta + \kappa_2 v_2 \sin \theta = \kappa v_1 \cos \theta + \kappa v_2 \sin \theta
$$

for almost all θ . Then we have $\kappa_1 = \kappa_2$

2. Suppose NOT. Then there are α and β which are simple closed geodesics in S satisfy

 $\alpha \cap \beta = \phi$

Since S is topologically a sphere, α and β divide S into three parts D_1 , D_2 and Σ where D_1 , D_2 are topologically disks and Σ is topologically a cylinder. Applying Gauss-Bonnet theorem to $\Sigma,$

$$
\int_{\Sigma} K dA \pm \int_{\alpha} \kappa_g ds \pm \int_{\beta} \kappa_g ds = 2\pi \chi(\Sigma) = 0
$$

$$
\int_{\Sigma} K dA = 0
$$

This is a contraction to $K > 0$.

3. (a) $[K > 0]$

From the assumption that Σ is closed, we have that it is compact without boundary.

By Q5(b) in hw5, we know that there must be a point $p_1 \in \Sigma$ such that

$$
K(p_1)>0
$$

(b) $[K < 0]$

By the assumption that Σ is not homeomorphic to a sphere, we have $\chi(\Sigma)$ = $2 - 2g \le 2 - 2 = 0.$

By the Gauss-Bonnet theorem,

$$
\int_{\Sigma} KdA = 2\pi \chi(\Sigma) \leq 0
$$

So there must be a point $p_2 \in \Sigma$ such that

$$
K(p_2) < 0
$$

(c) $[K = 0]$

W.L.O.G, we may assume Σ is connected. Otherwise, we consider each connected component of Σ in (a) and (b) .

Let $\gamma(t)$ be any path joining p_1 and p_2 , then $K(\gamma(t))$ is a smooth function on t. By the intermediate value theorem, there is a point $p_3 \in \Sigma$ such that

$$
K(p_3)=0
$$

4.

$$
X(u, v) = ((2 + \cos u)\cos v, (2 + \cos u)\sin v, \sin u)
$$

$$
X_u = (-\sin u \cos v, -\sin u \sin v, \cos u)
$$

$$
X_v = (-(2 + \cos u)\sin v, (2 + \cos u)\cos v, 0)
$$

The first fundamental form is

$$
g_{ij} = \begin{bmatrix} 1 & 0 \\ 0 & (2 + \cos u)^2 \end{bmatrix}
$$

Use the formula of Q3 in hw5,

$$
K = -\frac{1}{2\sqrt{EG}} \left[\left(\frac{E_v}{\sqrt{EG}} \right)_v + \left(\frac{G_u}{\sqrt{EG}} \right)_u \right]
$$

=
$$
-\frac{1}{2\sqrt{(2 + \cos u)^2}} \left[\left(\frac{0}{\sqrt{EG}} \right)_v + \left(\frac{-2(2 + \cos u)\sin u}{\sqrt{(2 + \cos u)^2}} \right)_u \right]
$$

=
$$
-\frac{1}{2(2 + \cos u)} [-2\cos u]
$$

=
$$
\frac{\cos u}{2 + \cos u}
$$

So the integration is

$$
\int_T K dA = \int_0^{2\pi} \int_0^{2\pi} \frac{\cos u}{(2 + \cos u)} \cdot (2 + \cos u) du dv
$$

$$
= \int_0^{2\pi} \int_0^{2\pi} \cos u du dv
$$

$$
= 0
$$

5. Let α , β , γ be arc-length parametrization of p_0q , qr , rp_0 . Since p_0q , rp_0 are meridians and qr lies on the equator, α , β , γ are all geodesics. Let \vec{V} be the path of the parallel transport of v. Then $\vec{V}(\alpha(p_0)) = v = \alpha'(p_0)$.

$$
\nabla_{\alpha'}\alpha' = 0
$$

$$
\vec{V}(\alpha) = \alpha'
$$

$$
\vec{V}(\alpha(q)) = \alpha'(q)
$$

Since β' , \vec{V} are both parallel vector fields on β and $\beta'(q) \perp \vec{V}(q)$, we have

$$
\vec{V}(r) = -\gamma'(r)
$$

Similarly to p_0q , on rp_0

$$
\vec{V}(\gamma)=-\gamma^{'}
$$

So the angle between the final position of v and the initial vector v is θ .