THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4030 Differential Geometry Solution of Assignment 3

1. (a)

$$X(u, v) = (f(u) \cos v, f(u) \sin v, g(u))$$
$$X_u = (f'(u) \cos v, f'(u) \sin v, g'(u))$$
$$X_v = (-f(u) \sin v, f(u) \cos v, 0)$$

 $\{X_u, X_v\}$ is linearly independent since g'(u) > 0. So the image S is a surface.

(b)

$$X_u \times X_v = (-fg' \cos v, -fg' \sin v, ff')$$

So the equation of the normal line is

$$\alpha(t) = X(u, v) + tX_u \times X_v = (f \cos v(1 - tg'), f \sin v(1 - tg'), g - tff')$$

When $t = \frac{1}{g'}$, $\alpha(t) = (0, 0, g - \frac{ff'}{g'})$. So the normal lines of S pass through the z-axis. 2. Let $x_0 \in S$, for any $y_0 \in S$ S is connected, so there is a smooth curve $\alpha(s) : [0, l] \to S$ such that

$$\alpha(0) = x_0, \alpha(l) = y_0$$

So $\alpha'(s) \in T_{\alpha(s)}S$ for any s.

By the assumption, all normal lines of S pass through p_0 ,

$$(p_0 - \alpha(s)) \perp T_{\alpha(s)}S$$
$$< p_0 - \alpha(s), \alpha'(s) \ge 0$$
$$< p_0 - \alpha(s), p_0 - \alpha(s) \ge' = 0$$

So $|\alpha(s) - p_0| = R$ for some positive constant R. (R > 0 because $\alpha(s)$ contains not only one point)

$$|x_0 - p_0| = |y_0 - p_0| = R$$

So S lies on a sphere since y_0 is arbitrary.

3. Let $A = \sup\{|x - y| : x, y \in S\}.$

S is compact, so there are $x_0, y_0 \in S$ such that

$$|x_0 - y_0| = A$$

Let *l* be the straight line joining x_0 and y_0 . Let $\alpha(s) : (-\epsilon, \epsilon) \to S$ be any regular curve in S with $\alpha(0) = x_0$. So $< \alpha(s) - y_0, \alpha(s) - y_0 >$ attains a maximum at t = 0,

$$< \alpha'(0), x_0 - y_0 >= 0$$

So we have $\alpha'(0) \perp l$. Then $T_{x_0}S \perp l$ since α is arbitrary. Similarly, $T_{y_0}S \perp l$. So l cuts S orthogonally at at least two points. 4. (a) Let $\{v_1, v_2\}$ be two unit vectors such that $\{v_1, v_2, a\}$ forms an orthonormal basis of \mathbb{R}^3 and,

```
v_1 \times v_2 = av_2 \times a = v_1a \times v_1 = v_2
```

Let $X(\theta, t) = r \cos \theta v_1 + r \sin \theta v_2 + ta$. Then $X(\theta, t)$ is a patametrization of S. For any $p_0 \in S$, then $t_0 = \langle p_0, a \rangle$ and $|p_0|^2 = r^2 + t_0^2$.

$$X_{\theta} = -r \sin \theta v_1 + r \cos \theta v_2$$
$$X_t = a$$
$$X_{\theta} \times X_t = r \sin \theta v_2 + r \cos \theta v_1$$
$$= p_0 - t_0 a$$
$$= p_0 - q_0, a > a$$

$$\begin{split} &v \in T_{p_0}S \\ \Leftrightarrow < v, X_\theta \times X_t >= 0 \\ \Leftrightarrow < v, p_0 - < p_0, a > a >= 0 \\ \Leftrightarrow < v, p_0 > - < p_0, a > < v, a >= 0 \\ \text{So } T_pS = \{v \in \mathbb{R}^3 : < v, p > - < p, a > < v, a >= 0\} \end{split}$$

(b) The normal line of S at p is

$$\alpha(s) = p + sX_{\theta} \times X_t$$
$$= p + s(p - \langle p, a \rangle a)$$

 $\alpha(-1) = \langle p, a \rangle a$ lies on the axis and $\langle X_{\theta} \times X_t, a \rangle = \langle X_{\theta} \times a, a \rangle = 0$. So the normal lines of S cut the axis orthogonally.

(c) Assume S is a connected surface whose normal lines all intersect a fixed straight line $l \subset \mathbb{R}^3$ orthogonally.

Let a be a unit direction vector of l.

Fix $x_0 \in S$, for any $y \in S$, there is a smooth regular curve $\beta(t) : [0,1] \to S$ such that $\beta(0) = x_0, \beta(1) = y$.

Let N(p) be a unit normal vector field of S.

Then by the assumption, $N//(p - \langle p, a \rangle a)$.

$$\begin{split} 0 &= <\beta'(t), N > \\ &= <\beta'(t), p - < p, a > a > \\ &= <\beta'(t), \beta(t) - <\beta(t), a > a > \\ &= <\beta'(t), \beta(t) > - <\beta'(t), a > <\beta(t), a > \\ &= \frac{1}{2}[<\beta(t), \beta(t) > - <\beta(t), a >^2]' \end{split}$$

So $< \beta(t), \beta(t) > - < \beta(t), a >^2 = r^2$ for some positive constant r.(r is positive because β contains not only one point)

So $S \subset \{p \in \mathbb{R}^3 : |p|^2 - \langle p, a \rangle^2 = r^2\}$ since y is arbitrary.

5. (a) For any $p \in S$, let $X : U \subset \mathbb{R}^2 \to S$ be a parametrization of S around p. Then $(f \circ X)(u, v) = |X(u, v) - p_0| = \langle X(u, v) - p_0, X(u, v) - p_0 \rangle^{\frac{1}{2}}$. By the assumption $p_0 \notin S$, we have $X(u, v) - p_0 \neq 0$ for all $(u, v) \in U$. So $f \circ X$ is a smooth function near $X^{-1}(p)$. Then f is a smooth function on S. Let $\alpha(t) : (-\epsilon, \epsilon) \to S$ be any regular curve on S with $\alpha(0) = p$.

$$(f \circ \alpha)'(t) = [<\alpha(t) - p_0, \alpha(t) - p_0 >^{\frac{1}{2}}]' \\ = \frac{<\alpha'(t), \alpha(t) - p_0 >}{|\alpha(t) - p_0|}$$

 $\begin{array}{ll} (f \circ \alpha)'(0) = 0 & \Leftrightarrow & < \alpha'(0), p - p_0 >= 0\\ \text{So } p \in S \text{ is a critical point of } f(p)\\ \Leftrightarrow (f \circ \alpha)'(0) = 0 \text{ for any such } \alpha\\ \Leftrightarrow < \alpha'(0), p - p_0 >= 0 \text{ for any such } \alpha\\ \Leftrightarrow (p - p_0) \perp T_p S \end{array}$

(b) Let $Y : U \subset \mathbb{R}^2 \to S$ be a parametrization of S around p. $(h \circ Y)(u, v) = \langle Y(u, v), v \rangle$ is a smooth function near $Y^{-1}(p)$. So h is a smooth function on S. Let $\beta(t) : (-\epsilon, \epsilon) \to S$ be any regular curve on S with $\beta(0) = p$.

$$(h \circ \beta)'(t) = <\beta(t), v >'$$
$$= <\beta'(t), v >$$

 $(h \circ \beta)'(0) = 0 \quad \Leftrightarrow \quad <\beta'(0), v \ge 0$ So $p \in S$ is a critical point of h(p) $\Leftrightarrow (h \circ \beta)'(0) = 0$ for any such β $\Leftrightarrow <\beta'(0), v \ge 0$ for any such β $\Leftrightarrow v \perp T_p S$ 6. Let $X : [0, 2\pi) \times [0, 2\pi) \to \mathbb{R}^3$ be

$$X(\theta,\phi) = <\cos\phi(a+r\cos\theta), \sin\phi(a+r\cos\theta), r\sin\theta >$$

Then X is a parametrization of S and X is bijective. $X_{\theta} = \langle -r \cos \phi \sin \theta, -r \sin \phi \sin \theta, r \cos \theta \rangle$ $X_{\phi} = \langle -\sin \phi (a + r \cos \theta), \cos \phi (a + r \cos \theta), 0 \rangle$ $|X_{\theta}|^2 = r^2, |X_{\phi}|^2 = (a + r \cos \theta)^2, \langle X_{\theta}, X_{\phi} \rangle = 0$ So the area of S is

$$Area = \int_0^{2\pi} \int_0^{2\pi} \sqrt{|X_\theta|^2 |X_\phi|^2} - \langle X_\theta, X_\phi \rangle^2} d\phi d\theta$$
$$= \int_0^{2\pi} \int_0^{2\pi} r(a + r\cos\theta) d\phi d\theta$$
$$= \int_0^{2\pi} (2\pi a r + 2\pi r^2 \cos\theta) d\theta$$
$$= 4\pi^2 a r$$

7. Let a be a regular value of F.

Then $S = F^{-1}(a)$ is a regular surface and $\nabla F \neq 0$ on S. Let $p \in S$, let $\alpha(t) : (-\epsilon, \epsilon) \to S$ be any regular curve on S with $\alpha(0) = p$.

$$\begin{aligned} \alpha(t) \subset S \\ (F \circ \alpha)(t) &= a \\ (F \circ \alpha)'(0) &= 0 \\ < \nabla F(p), \alpha'(0) > &= 0 \end{aligned}$$

So $\nabla F(p) \perp T_p S$ since such α is arbitrary. F is a smooth function and $\nabla F \neq 0$ on S. So $\frac{\nabla F}{|\nabla F|}$ defines a smooth unit normal vector field on S. Then S is orientable. 8. $X_u = \langle \cos v, \sin v, 0 \rangle, X_v = \langle -u \sin v, u \cos v, b \rangle$ $g_{uv} = \begin{bmatrix} 1 & 0 \\ 0 & b^2 + u^2 \end{bmatrix}$ the area of the surface is

$$area = \int_{0}^{2\pi} \int_{1}^{3} \sqrt{\det(g_{uv})} du dv$$

= $\int_{0}^{2\pi} \int_{1}^{3} \sqrt{b^{2} + u^{2}} du dv$
= $\int_{0}^{2\pi} \frac{1}{2} \left[u\sqrt{u^{2} + b^{2}} + b^{2} \ln|u + \sqrt{u^{2} + b^{2}}| \right]_{1}^{3} dv$
= $\pi \left[3\sqrt{9 + b^{2}} - \sqrt{1 + b^{2}} + b^{2} \ln(3 + \sqrt{9 + b^{2}}) - b^{2} \ln(1 + \sqrt{1 + b^{2}}) \right]$

9. $\psi = \overline{X}^{-1} \circ X$ $\overline{X}(\psi) = X$ $\overline{X}(\overline{u}(u, v), \overline{v}(u, v)) = X(u, v)$ So we have

$$\frac{\partial X}{\partial u} = \frac{\partial \overline{X}}{\partial \overline{u}} \frac{\partial \overline{u}}{\partial u} + \frac{\partial \overline{X}}{\partial \overline{v}} \frac{\partial \overline{v}}{\partial u}$$
$$\frac{\partial X}{\partial v} = \frac{\partial \overline{X}}{\partial \overline{u}} \frac{\partial \overline{u}}{\partial v} + \frac{\partial \overline{X}}{\partial \overline{v}} \frac{\partial \overline{v}}{\partial v}$$
$$\begin{bmatrix} \frac{\partial X}{\partial u} \\ \frac{\partial X}{\partial v} \end{bmatrix} = \begin{bmatrix} \frac{\partial \overline{u}}{\partial u} & \frac{\partial \overline{v}}{\partial v} \\ \frac{\partial \overline{u}}{\partial v} & \frac{\partial \overline{v}}{\partial v} \end{bmatrix} \begin{bmatrix} \frac{\partial \overline{X}}{\partial \overline{u}} \\ \frac{\partial \overline{x}}{\partial \overline{v}} \\ \frac{\partial \overline{x}}{\partial \overline{v}} \end{bmatrix}$$

By the assumption

$$\begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} \frac{\partial X}{\partial u} \\ \frac{\partial X}{\partial v} \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} \frac{\partial \overline{u}}{\partial u} & \frac{\partial \overline{v}}{\partial u} \\ \frac{\partial \overline{u}}{\partial v} & \frac{\partial \overline{v}}{\partial v} \end{bmatrix} \begin{bmatrix} \frac{\partial \overline{X}}{\partial \overline{u}} \\ \frac{\partial \overline{X}}{\partial \overline{v}} \end{bmatrix}$$
$$= \begin{bmatrix} b_1 & b_2 \end{bmatrix} \begin{bmatrix} \frac{\partial \overline{X}}{\partial \overline{u}} \\ \frac{\partial \overline{X}}{\partial \overline{v}} \end{bmatrix}$$

So we get

$$\begin{bmatrix} b_1 & b_2 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 \end{bmatrix} \begin{bmatrix} \frac{\partial \overline{u}}{\partial \underline{u}} & \frac{\partial \overline{v}}{\partial \underline{u}} \\ \frac{\partial \overline{u}}{\partial v} & \frac{\partial \overline{v}}{\partial v} \end{bmatrix}$$

which is

$$\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} = \begin{bmatrix} \frac{\partial \overline{u}}{\partial u} & \frac{\partial \overline{u}}{\partial v} \\ \frac{\partial \overline{v}}{\partial u} & \frac{\partial \overline{v}}{\partial v} \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$$

10. (a)

$$x^{2} + y^{2} + z^{2} = ax$$
$$(x - \frac{a}{2})^{2} + y^{2} + z^{2} = (\frac{a}{2})^{2}$$

So S_1 is the sphere centered at $(\frac{a}{2}, 0, 0)$ with radius $\frac{a}{2}$. Similarly, S_2 is the sphere centered at $(0, \frac{b}{2}, 0)$ with radius $\frac{b}{2}$ and S_3 is the sphere centered at $(0, 0, \frac{c}{2})$ with radius $\frac{c}{2}$.

(b) Since S_1 and S_2 are spheres,

$$N_{1} = \frac{2}{a}(x - \frac{a}{2}, y, z)$$
$$N_{2} = \frac{2}{b}(x, y - \frac{b}{2}, z)$$

are unit normal vector fields of S_1 and S_2 . Let $p = (x_0, y_0, z_0) \in S_1 \cap S_2$, then p satisfies

$$x_0^2 + y_0^2 + z_0^2 = ax_0$$
$$x_0^2 + y_0^2 + z_0^2 = by_0$$

So we have

 $ax_0 = by_0$

Then we compute the angle between S_1 and S_2 ,

$$< N_{1}(p), N_{2}(p) > = \frac{4}{ab}(x_{0}^{2} - \frac{a}{2}x_{0} + y_{0}^{2} - \frac{b}{2}y_{0} + z_{0}^{2})$$
$$= \frac{4}{ab}(x_{0}^{2} + y_{0}^{2} + z_{0}^{2} - \frac{a}{2}x_{0} - \frac{b}{2}y_{0})$$
$$= \frac{4}{ab}(ax_{0} - \frac{a}{2}x_{0} - \frac{b}{2}y_{0})$$
$$= \frac{2}{ab}(ax_{0} - by_{0})$$
$$= 0$$

So S_1 meets S_2 orthogonally. Similarly, S_1 , S_2 , and S_3 all meet orthogonally. 11. Let $\phi: S_1 \to \mathbb{R}^3$ be

$$\phi(x, y, z) = \left(\frac{x}{a}, \frac{y}{b}, \frac{z}{c}\right)$$

Then we need to show that ϕ is a bijective differentiable map between S_1 and S_2 .

(a) Show that $\phi(S_1) \subset S_2$ Let $(x, y, z) \in S_1$, then

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
$$(\frac{x}{a})^2 + (\frac{y}{b})^2 + (\frac{z}{c})^2 = 1$$
$$\|\phi(x, y, z)\| = 1$$

So $\phi(x, y, z) \in S_2$.

(b) Show that ϕ is injective

$$\phi(x_1, y_1, z_1) = \phi(x_2, y_2, z_2)$$
$$(\frac{x_1}{a}, \frac{y_1}{b}, \frac{z_1}{c}) = (\frac{x_2}{a}, \frac{y_2}{b}, \frac{z_2}{c})$$
$$(x_1, y_1, z_1) = (x_2, y_2, z_2)$$

So ϕ is injective.

(c) Show that ϕ is surjective For any $(\overline{x}, \overline{y}, \overline{z}) \in S_2, \ \overline{x}^2 + \overline{y}^2 + \overline{z}^2 = 1.$ Let $(x, y, z) = (a\overline{x}, b\overline{y}, c\overline{z})$, then

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = \overline{x}^2 + \overline{y}^2 + \overline{z}^2 = 1$$

So $(x, y, z) \in S_1$ and $\phi(x, y, z) = (\overline{x}, \overline{y}, \overline{z})$. This means ϕ is surjective.

(d) Show that ϕ is differentiable

For any $p \in S_1$, let $X : U \to S_1$ be parametrization of S_1 around p. So $\phi \circ X : \mathbb{R}^2 \to \mathbb{R}^3$ is smooth since X is smooth from \mathbb{R}^2 to \mathbb{R}^3 and ϕ is smooth from \mathbb{R}^3 to \mathbb{R}^3 .

So ϕ is a differentiable map from S_1 to S_2 .