THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4030 Differential Geometry Solution of Assignment 2

1. (a) By the definition,

$$\begin{split} L_a^b(\alpha) &= \int_a^b |\alpha'(\theta)| d\theta \\ &= \int_a^b \left| \left(r'(\theta) \cos \theta - r(\theta) \sin \theta, r'(\theta) \sin \theta + r(\theta) \cos \theta \right) \right| d\theta \\ &= \int_a^b \sqrt{r(\theta)^2 + r'(\theta)^2} d\theta \end{split}$$

(b) To compute the curvature of α , we need to know α' and α'' .

$$\alpha^{''} = \left(r^{''}\cos\theta - 2r^{'}\sin\theta - r\cos\theta, r^{''}\sin\theta + 2r^{'}\cos\theta - r\sin\theta\right)$$

So the curvature is

$$\kappa = \frac{\det(\alpha', \alpha'')}{|\alpha'|^3} = \frac{2(r')^2 - rr'' + r^2}{[(r')^2 + r^2]^{\frac{3}{2}}}$$

2. (a) " \Rightarrow " Given $\alpha(s)$, a helix which is p.b.a.l. and $\kappa > 0$. Then we have

$$\langle \alpha'(s), v_0 \rangle = c_0$$

for a non-zero fixed vector v_0 and a constant c_0 . So we have $\langle T(s), v_0 \rangle = c_0$.

$$< T(s), v_0 > = 0$$

$$< \kappa N(s), v_0 > = 0$$

$$< N(s), v_0 > = 0 \text{ since } \kappa > 0$$

So we have $\langle N(s), v_0 \rangle = 0$. Keep differentiating,

$$< N(s), v_0 > = 0$$

 $< -\kappa T(s) - \tau B(s), v_0 > = 0$
 $-\kappa < T(s), v_0 > -\tau < B(s), v_0 > = 0$
 $-\kappa c_0 - \tau < B(s), v_0 > = 0$

,

Now we need to compute $\langle B(s), v_0 \rangle$,

$$< B(s), v_0 >' = < B'(s), v_0 >$$

= $< \tau N(s), v_0 >$
= $\tau < N(s), v_0 >$
= 0

So $\langle B(s), v_0 \rangle = c_1$ for some constant c_1 .

$$-\kappa c_0 - \tau < B(s), v_0 >= 0$$
$$-\kappa c_0 - \tau c_1 = 0$$

Now we need to show that $c_1 \neq 0$. If $c_0 \neq 0$, then $c_1 \neq 0$ since $\kappa > 0$. If $c_0 = 0$, then

$$0 \neq |v_0|^2$$

=< T(s), $v_0 >^2 + < N(s), v_0 >^2 + < B(s), v_0 >^2$
= $c_0^2 + c_1^2$
= c_1^2

So in any case, $c_1 \neq 0$. Then $\tau = -\frac{c_0}{c_1}\kappa$ (b) " \Leftarrow " Given $\tau = c\kappa$ for some constant c. Go back to the previous proof, we just let v(s) = -cT(s) + B(s).

$$v'(s) = -cT'(s) + B'(s)$$

= $-c(\kappa N(s)) + \tau N(s)$
= $(-c\kappa + \tau)N(s)$
= $(-c\kappa + c\kappa)N(s)$
= 0

So v(s) is a non-zero fixed vector and

$$< \alpha'(s), v > = < T(s), -cT(s) + B(s) > = -c$$

- 3. We need to show two things, which are α lies on a sphere and α lies on a plane.
 - (a) Show that α lies on a sphere.

By the assumption, $\alpha(s) - x_0 = f(s)N(s)$ for some function f(s).

$$< \alpha(s) - x_0, \alpha(s) - x_0 >' = < \alpha'(s), \alpha(s) - x_0 >$$

= $< T(s), f(s)N(s) >$
= 0

So $|\alpha(s) - x_0| = R$ for some positive constant R. (If R = 0, α will be a single point. A point is not a regular curve). Which means α lies on a sphere.

(b) Show that α lies on a plane.

$$< \alpha(s) - x_0, B(s) > = < f(s)N(s), B(s) > = 0$$

 $< \alpha(s) - x_0, B(s) > = 0$
 $< T(s), B(s) > + < f(s)N(s), \tau N(s) > = 0$
 $f(s)\tau = 0$

We get $\tau = 0$ since f(s) is not identically zero. So α lies on a plane.

4. (a)
$$\alpha' = (-a \sin t, b \cos t)$$

 $\alpha'' = (-a \cos t, -b \sin t)$
 $\kappa = \frac{\det(\alpha', \alpha'')}{|\alpha'|^3}$
 $= \frac{ab}{|\alpha'|^3}$
 > 0

So the ellipse is convex.

(b)

$$0 = \kappa'(s)$$

$$= \left(\frac{ab}{|\alpha'|^3}\right)'$$

$$= -\frac{3ab(a^2 - b^2)}{|\alpha'|^5}\sin t\cos t$$

$$= -\frac{3ab(a^2 - b^2)}{2|\alpha'|^5}\sin 2t$$

$$\sin 2t = 0 \quad \text{since } a > b > 0$$
$$t = 0, \frac{\pi}{2}, \pi, \frac{3}{2}\pi, 2\pi$$

So the ellipse has exactly 4 vertices.

5. (a) Method 1:

Suppose the cone is a surface.

Then for $V = \{(x, y, z) \in S | -1 < z < 1\}$, an open neighborhood of $(0, 0, 0) \in S$, there is an open subset $U \subset R^2$ and a function X such that

 $X: U \to V$ is a homeomorphism

Let $p_0 \in U$ with $X(p_0) = (0, 0, 0)$. Since U is open, there is a $\epsilon > 0$ such that $\overline{B_{\epsilon}(p_0)} \subset U$. Since X is a homeomorphism, $X(B_{\epsilon}(p_0))$ is an open neighborhood of (0, 0, 0) in S. So $X(B_{\epsilon}(p_0)) \setminus (0, 0, 0)$ is not connected as $X(B_{\epsilon}(p_0))$ is open in S. But $B_{\epsilon}(p_0) \setminus \{p_0\}$ is connected, this is a contraction since X is a homeomorphism. So the cone is not a surface.

(b) Method 2:

f(x, y) = $z = \pm \sqrt{x^2 + y^2}$ is not smooth and not one-to-one near (0,0). So are $g(y, z) = x = \pm \sqrt{z^2 - y^2}$ and $h(x, z) = y = \pm \sqrt{z^2 - x^2}$. So the cone is not a surface 6. (a) S is the graph of $f(x, y) = x^2 - y^2$, so it is a surface. (b)

So
$$X_1(u,v) \in S$$
.

$$\frac{\partial X_1}{\partial u} = (1,1,4v)$$

$$\frac{\partial X_1}{\partial v} = (1,-1,4u)$$

So $\{\frac{\partial X_1}{\partial u}, \frac{\partial X_1}{\partial v}\}$ is linearly independent. Then $X_1(u, v)$ is a parametrization.

(c)

$$(u\cosh v)^2 + (u\sinh v)^2 = u^2$$

So $X_2(u, v) \in S$.

$$\frac{\partial X_2}{\partial u} = (\cosh v, \sinh v, 2u)$$
$$\frac{\partial X_2}{\partial v} = (u \sinh v, u \cosh v, 0)$$

So $\{\frac{\partial X_2}{\partial u}, \frac{\partial X_2}{\partial v}\}$ is linearly independent as $u \neq 0$. Then $X_2(u, v)$ is a parametrization.

- 7. (a) dF = (0, 0, 2z)When $F = z^2 = 0, z = 0$. dF(0, 0, 0) = (0, 0, 0)So 0 is not a regular value of F.
 - (b) $F^{-1}(0) = \{(x, y, 0) | (x, y) \in \mathbb{R}^2\}$ So $F^{-1}(0)$ is the xOy plane, and it is a surface.