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1. (a) By the definition,

Lba(α) =

∫ b

a

|α′
(θ)|dθ

=

∫ b

a

∣∣∣(r′(θ) cos θ − r(θ) sin θ, r
′
(θ) sin θ + r(θ) cos θ

)∣∣∣ dθ
=

∫ b

a

√
r(θ)2 + r′(θ)2dθ

(b) To compute the curvature of α, we need to know α
′

and α
′′
.

α
′′

=
(
r
′′

cos θ − 2r
′
sin θ − r cos θ, r

′′
sin θ + 2r

′
cos θ − r sin θ

)
So the curvature is

κ =
det(α

′
, α

′′
)

|α′|3

=
2(r

′
)2 − rr′′ + r2

[(r′)2 + r2]
3
2
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2. (a) ′′ ⇒′′ Given α(s), a helix which is p.b.a.l. and κ > 0.
Then we have

< α
′
(s), v0 >= c0

for a non-zero fixed vector v0 and a constant c0.
So we have < T (s), v0 >= c0.

< T (s), v0 >
′
= 0

< κN(s), v0 >= 0

< N(s), v0 >= 0 since κ > 0

So we have < N(s), v0 >= 0.
Keep differentiating,

< N(s), v0 >
′
= 0

< −κT (s)− τB(s), v0 >= 0

−κ < T (s), v0 > −τ < B(s), v0 >= 0

−κc0 − τ < B(s), v0 >= 0

Now we need to compute < B(s), v0 >,

< B(s), v0 >
′
=< B

′
(s), v0 >

=< τN(s), v0 >

= τ < N(s), v0 >

= 0

So < B(s), v0 >= c1 for some constant c1.

−κc0 − τ < B(s), v0 >= 0

−κc0 − τc1 = 0

Now we need to show that c1 6= 0.
If c0 6= 0, then c1 6= 0 since κ > 0.
If c0 = 0, then

0 6= |v0|2

=< T (s), v0 >
2 + < N(s), v0 >

2 + < B(s), v0 >
2

= c20 + c21
= c21

So in any case, c1 6= 0.

Then τ = −c0
c1
κ
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(b) ′′ ⇐′′ Given τ = cκ for some constant c.
Go back to the previous proof, we just let v(s) = −cT (s) +B(s).

v
′
(s) = −cT ′

(s) +B
′
(s)

= −c(κN(s)) + τN(s)

= (−cκ+ τ)N(s)

= (−cκ+ cκ)N(s)

= 0

So v(s) is a non-zero fixed vector and

< α
′
(s), v >=< T (s),−cT (s) +B(s) >= −c
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3. We need to show two things, which are α lies on a sphere and α lies on a plane.

(a) Show that α lies on a sphere.
By the assumption, α(s)− x0 = f(s)N(s) for some function f(s).

< α(s)− x0, α(s)− x0 >
′
=< α

′
(s), α(s)− x0 >

=< T (s), f(s)N(s) >

= 0

So |α(s)− x0| = R for some positive constant R. (If R = 0, α will be a single
point. A point is not a regular curve).
Which means α lies on a sphere.

(b) Show that α lies on a plane.

< α(s)− x0, B(s) >=< f(s)N(s), B(s) >= 0

< α(s)− x0, B(s) >
′
= 0

< T (s), B(s) > + < f(s)N(s), τN(s) >= 0

f(s)τ = 0

We get τ = 0 since f(s) is not identically zero.
So α lies on a plane.
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4. (a) α
′
= (−a sin t, b cos t)

α
′′

= (−a cos t,−b sin t)

κ =
det(α

′
, α

′′
)

|α′|3

=
ab

|α′|3

> 0

So the ellipse is convex.

(b)

0 = κ
′
(s)

=

(
ab

|α′|3

)′

= −3ab(a2 − b2)
|α′|5

sin t cos t

= −3ab(a2 − b2)
2|α′ |5

sin 2t

sin 2t = 0 since a > b > 0

t = 0,
π

2
, π,

3

2
π, 2π

So the ellipse has exactly 4 vertices.
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5. (a) Method 1:
Suppose the cone is a surface.
Then for V = {(x, y, z) ∈ S| − 1 < z < 1}, an open neighborhood of (0, 0, 0) ∈
S, there is an open subset U ⊂ R2 and a function X such that

X : U → V is a homeomorphism

Let p0 ∈ U with X(p0) = (0, 0, 0).
Since U is open, there is a ε > 0 such that Bε(p0) ⊂ U .
Since X is a homeomorphism, X(Bε(p0)) is an open neighborhood of (0, 0, 0)
in S.
So X(Bε(p0))\(0, 0, 0)) is not connected as X(Bε(p0)) is open in S.
ButBε(p0)\{p0} is connected, this is a contraction since X is a homeomorphism.
So the cone is not a surface.

(b) Method 2:
f(x, y) = z = +

√
x2 + y2 is not smooth and not one-to-one near (0,0).

So are g(y, z) = x = +
√
z2 − y2 and h(x, z) = y = +

√
z2 − x2.

So the cone is not a surface
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6. (a) S is the graph of f(x, y) = x2 − y2, so it is a surface.

(b)
(u+ v)2 − (u− v)2 = 4uv

So X1(u, v) ∈ S.

∂X1

∂u
= (1, 1, 4v)

∂X1

∂v
= (1,−1, 4u)

So {∂X1

∂u
,
∂X1

∂v
} is linearly independent.

Then X1(u, v) is a parametrization.

(c)
(u cosh v)2 + (u sinh v)2 = u2

So X2(u, v) ∈ S.

∂X2

∂u
= (cosh v, sinh v, 2u)

∂X2

∂v
= (u sinh v, u cosh v, 0)

So {∂X2

∂u
,
∂X2

∂v
} is linearly independent as u 6= 0.

Then X2(u, v) is a parametrization.
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7. (a) dF = (0, 0, 2z)
When F = z2 = 0, z = 0.
dF (0, 0, 0) = (0, 0, 0)
So 0 is not a regular value of F.

(b) F−1(0) = {(x, y, 0)|(x, y) ∈ R2}
So F−1(0) is the xOy plane, and it is a surface.


