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In this short note, we collect some background materials that you are supposed to know for the course MATH
4030. This would serve as (i) a review of some concepts and theorems you have learned before that are relevant
to the course; (ii) a guide towards references where you can look up more detailed treatments. Sections marked
with an asterisk ∗ are only required for specific topics in the course and you can just assume them as facts.

Throughout this course, we use Rn to denote the space of n-tuples of real numbers

Rn := {(x1, · · · , xn) : xi ∈ R for i = 1, · · · , n}

equipped with the norm

|(x1, · · · , xn)| :=
√

(x1)2 + (x2)2 + · · ·+ (xn)2.

The norm is induced by the standard dot product

〈(x1, · · · , xn), (y1, · · · , yn)〉 :=

n∑
i=1

xiyi

which makes (Rn, 〈·, ·〉) an inner product space.

1. Multivariable calculus

We require a solid background of the materials covered in MATH 2010 and 2020 (or their equivalence). A
good reference is Chapters 1 to 3 of Michael Spivak’s Calculus on Manifolds and Appendix of Chapter 2 in the
textbook.

1.1. Functions on Euclidean space. Let U ⊂ Rn. A function F : U → Rm is a rule which assign each point
x ∈ U some point F (x) ∈ Rm. The set U is called the domain of F . For V ⊂ U and A ⊂ Rm, we denote the
image of V and pre-image of A under F respectively by

F (V ) := {F (x) : x ∈ V } ⊂ Rm and F−1(A) := {x ∈ U : F (x) ∈ A} ⊂ Rn.

The notation F : U → A means F (U) ⊂ A.One can express a function F : U → Rm as

F (x) = (f1(x), · · · , fm(x)),

where each component function f i : U → R is a real-valued function defined on U . Given two functions
F : U → Rm and G : V → Rp where F (U) ⊂ V ⊂ Rm, one defines the composition G ◦ F : U → Rp by
G ◦ F (x) := G(F (x)). A function F : U → A is said to be 1-1 if F (x) 6= F (y) whenever x 6= y; onto if
F (U) = A; bijective if it is both 1-1 and onto.

A function F : U → Rm is continuous at a ∈ U if limx→a F (x) = F (a), i.e. for any ε > 0, there exists δ > 0
such that |F (x) − F (a)| < ε for every x ∈ U such that |x − a| < δ. We simply say F is continuous if it is
continuous at each a ∈ U . A function F : U → Rm is continuous if and only if each component function f i is
continuous. Compositions of continuous functions are continuous. Restrictions of continuous functions to any
sub-domain are still continuous. A bijective continuous function F : A → B is said to be a homeomorphism
if its inverse F−1 : B → A is also continuous.

1.2. Differentiation. Let U ⊂ Rn be an open set. A function F : U → Rm is differentiable at a ∈ U if there
exists a (unique) linear map dFa : Rn → Rm, called the differential of F at a such that

lim
h→0

|F (a+ h)− F (a)− dFa(h)|
|h|

= 0.

We simply say F is differentiable if it is differentiable at each a ∈ U . For a function F : A→ Rm where A ⊂ Rn
is an arbitrary subset (not necessarily open! ), we say that it is differentiable if there exists an open set U ⊂ Rn
containing A and a differentiable function F : U → Rm such that the restriction F |A = F . Compositions of
differentiable functions are differentiable. Moreover, their differentials satisfy the Chain Rule:

d(G ◦ F )a = dGF (a) ◦ dFa.
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The differential dFa : Rn → Rm can be expressed using the standard bases of Rn and Rm by the Jacobian
matrix

DF (a) =


∂f1

∂x1 · · · ∂f1

∂xn

...
. . .

...
∂fm

∂x1 · · · ∂fm

∂xn


where ∂fi

∂xj denotes the j-th partial derivative of the i-th component function f i, evaluated at a. Recall that

a function f : U → R is said to be of class Ck if all the partial derivatives of f up to order k exist and are
continuous. If f is of class Ck for every k ∈ N, we say f is smooth or of class C∞.

Theorem 1 (Clairaut’s Theorem). Let f : U → R be a Ck function. Then all mixed partial derivatives up to
order k are independent of the order of taking the derivatives. For instance, for any C2 function f(x1, x2) : U →
R, we have

∂2f

∂x1∂x2
=

∂2f

∂x2∂x1
.

We list below some useful theorems about differentiation of a real-valued function.

Theorem 2. Let f : U ⊂ Rn → R be a differentiable function defined on an open subset U ⊂ Rn.

(i) At each p ∈ U which is a local minima or maxima of f , we have dfp = 0;
(ii) If dfp = 0 at every point p ∈ U and U is connected, then f is constant on U .

A vector-valued function F : U → Rm is said to be of class Ck if each component function is of class Ck.

Theorem 3 (Inverse Function Theorem). Let F : U ⊂ Rn → Rn be a C1 function. Suppose dFa : Rn → Rn is
an isomorphism. Then there exists a neighborhood V of a in U and a neighborhood W of F (p) in Rn such that
F : V →W is a diffeomorphism (i.e. F has a differentiable inverse F−1 : W → V ).

Theorem 4 (Implicit Function Theorem). Let F : U ⊂ Rn × Rm → Rm be a C1 function. Suppose F (a, b) = 0
at some (a, b) ∈ U and that the m×m matrix

∂f1

∂xn+1 · · · ∂f1

∂xn+m

...
. . .

...
∂fm

∂xn+1 · · · ∂fm

∂xn+m


is invertible. Then there exist a neighborhood A ⊂ Rn of a and a neighborhood B ⊂ Rm of b such that A×B ⊂ U
and F (x, g(x)) = 0 for some differentiable function g : A→ B.

1.3. Integration. Since all the functions we are going to considered in this course are at least continuous, we
do not go into detail about various definitions of integrability (e.g. Riemann or Lebesgue) as all of them are
equivalent in this case. For simplicity, we assume that all functions are continuous real-valued functions of two
variables.

Let f : R = [a, b] × [c, d] → R be a continuous function. Then the double integral of f over the rectangle R
can be computed by either of the iterated integrals using Fubini’s theorem:∫∫

R

f dA =

∫ d

c

∫ b

a

f(x, y) dxdy =

∫ b

a

∫ d

c

f(x, y) dydx.

Recall that a subset A ⊂ R2 has measure zero if for every ε > 0, there is a (possibly countable) cover
{R1, R2, · · · } of A by closed rectangles such that

∑∞
i=1 area(Ri) < ε. It is known that integrals are not affected

by sets of measure zero (provided that f is continuous), e.g.∫∫
R

f dA =

∫∫
R\A

f dA.

Theorem 5 (Change of variable formula). Let A ⊂ R2 be an open set and ϕ : A→ R2 be a C1 function which
is a diffeomorphism onto its image ϕ(A). Then∫∫

ϕ(A)

f dA =

∫∫
A

(f ◦ ϕ)|det dϕ| dA.
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1.4. Fundamental Theorems of Calculus. We recall here various versions of the fundamental theorems of
calculus, which say that differentiation and integration are roughly inverse to each other.

Theorem 6 (1D Fundamental Theorem of Calculus). Let f : [a, b]→ R be a C1 function. Then∫ b

a

f ′(x) dx = f(b)− f(a).

In dimension two, we have the following.

Theorem 7 (Green’s Theorem). Let P,Q : Ω→ R be C1 functions on a bounded domain Ω ⊂ R2 with piecewise
C1 boundary ∂Ω, with positive orientation. Then∫∫

Ω

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∮
∂Ω

(P dx+Q dy).

2. Linear Algebra

We require a solid background of the materials covered in MATH 1030 and 2040 (or their equivalence). A good
reference is Chapters 1 to 6 of Friedberg, Insel and Spence’s Linear Algebra.

2.1. Linear maps and matrices. Let V,W be finite dimensional vector spaces over R. A function T : V →W
is called a linear map if T (au+ bv) = aT (u) + bT (v) for any u, v ∈ V , a, b ∈ R. For any fixed bases (i.e. linear
independent spanning set) β = {v1, · · · , vn} of V and γ = {w1, · · · , wm} of W , we can represent T by an m× n
matrix

[T ]γβ =

a1
1 · · · an1
...

. . .
...

a1
m · · · anm


where T (ui) =

∑m
j=1 a

j
iwj . When V = W and β = γ, one simply writes [T ]β or sometimes even T when the

basis β is understood. If T : V → V is a linear map and β, γ are two different bases of the same vector space V ,
then the matrices [T ]β and [T ]γ are related by the change of basis formula:

[T ]γ = Q−1[T ]βQ

where Q = [I]βγ is invertible. We define two important invariants, called the determinant and trace of T
respectively, by detT = det[T ]β and trT = tr[T ]β . By the change of basis formula, these are independent of the
choice of the basis β.

Let T : V → V be a linear map. A non-zero vector v ∈ V is said to be an eigenvector of T if Tv = λv for some
λ ∈ R. The scalar λ ∈ R is called the eigenvalue of T associated to v. Every eigenvalue λ ∈ R of T is a (real)
solution to the characteristic equation

det([T ]β − λI) = 0

for any choice of basis β for V . A linear map T : V → V is diagonalizable if there exists a basis consisting of
eigenvectors of T .

2.2. Self-adjoint linear maps and bilinear forms. Let V be an n-dimensional vector space. A map B :
V × V → R is called a bilinear form on V if it is a linear function in each variable, i.e. for all λ1, λ2 ∈ R and
v1, v2, w ∈ V , we have

(i) B(λ1v1 + λ2v2, w) = λ1B(v1, w) + λ2B(v2, w);
(ii) B(w, λ1v1 + λ2v2) = λ1B(w, v1) + λ2B(w, v2).

A bilinear form B is symmetric if B(v, w) = B(w, v) for all v, w ∈ V . Given any basis β = {v1, · · · , vn} of V ,
we can express B as an n× n matrix:

[B]β =

B(v1, v1) · · · B(v1, vn)
...

. . .
...

B(vn, v1) · · · B(vn, vn)

 .

Note that [B]β is a symmetric matrix if B is symmetric. Moreover, if β, γ are two different bases of V , then we
have the following transformation law (Notice how this is different from that for linear operators! ):

[B]γ = Qt[B]βQ.
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An inner product on V is a symmetric bilinear form 〈·, ·〉 on V such that 〈v, v〉 > 0 for all non-zero v ∈ V .
The length of v is then defined to be |v| := 〈v, v〉1/2. Two vectors v, w ∈ V are said to be perpendicular or
orthogonal if 〈v, w〉 = 0. A basis {v1, · · · , vn} is said to be an orthonormal basis if

〈vi, vj〉 = δij :=

{
1 when i = j,
0 when i 6= j.

Let (V, 〈·, ·〉) be an inner product space. A linear map T : V → V is self-adjoint if 〈Tv,w〉 = 〈v, Tw〉 for
all v, w ∈ V . If β is an orthonormal basis of (V, 〈·, ·〉), then the matrix representation of T is symmetric, i.e.
[T ]β = [T ]tβ .

Theorem 8 (Spectral Theorem). For any self-adjoint operator T : V → V on a finite dimensional inner product
space (V, 〈·, ·〉), there exists an orthonormal basis β of V consisting of eigenvectors of T . Equivalently, for any
symmetric real n× n matrix A, there exists an orthogonal matrix P ∈ O(n) (i.e. P−1 = P t) such that PAP t is
a diagonal matrix.

On a inner product space (V, 〈·, ·〉), symmetric bilinear forms B and self-adjoint operators T are naturally
identified with each other by the relationship

B(v, w) = 〈Tv,w〉.

2.3. Isometries of Euclidean spaces. Recall that an isometry on Rn is a function ϕ : Rn → Rn so that
distances are preserved, i.e. |ϕ(x) − ϕ(y)| = |x − y| for any x, y ∈ Rn. We recall the orthogonal group and
special orthogonal group

O(n) := { n× n matrix A : AAt = I},

SO(n) := {A ∈ O(n) : detA > 0}.

Note that detA = ±1 for any A ∈ O(n).

Theorem 9 (Euclidean isometries). Any isometry ϕ of Rn can be written in the form

ϕ(x) = Ax+ c

for some A ∈ O(n) and c ∈ Rn. Hence, any isometry on Rn is a composition of rotations, reflections and trans-
lations. In case ϕ is orientation-preserving, one can take A ∈ SO(n) and write any isometry as a composition
of rotations and translations.

3. Topology*

A working knowledge of the materials covered in MATH 3070 (or its equivalence) is helpful for the course. A
good reference is Chapters 1 of James Munkres’ Analysis on Manifolds and Chapter 12 of Topology by the same
author.

3.1. Compact and connected subspaces of Rn. Recall that a subset K ⊂ Rn is said to be compact if any
open cover of K has a finite sub-cover. It is known that K ⊂ Rn is compact if and only if it is closed and
bounded.

Theorem 10 (Extreme value theorem). Any continuous function F : K → R defined on a compact subset
K ⊂ Rn has a global maximum and minimum.

Recall that a metric (or topological) space X is connected if ∅ and X are the only subsets which are both open
and closed.

Theorem 11 (Intermediate value theorem). Let F : U ⊂ Rn → Rm be a continuous function. If X ⊂ U is
connected, then F (X) is also connected.
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3.2. Classification of compact orientable surfaces. (You can skip this part for now and get back to it later
in the course.) Let M ⊂ R3 be c compact, oriented surface (possibly with piecewise-smooth boundary). It is
know that any such surface admits a triangulation τ , i.e. we may write

M =

m⋃
i=1

∆i

such that

(i) each ∆i is the image of a triangle under an orientation-preserving orthogonal parametrization;
(ii) ∆i ∩∆j , i 6= j, is either empty, a single vertex, or a single edge;
(iii) when ∆i ∩∆j consists of a single edge, the orientation of the edge are opposite in ∆i and ∆j ;
(iv) at most one edge of ∆i is contained in in the boundary of M .

Given any triangulation τ of M as above, we define the Euler characteristic of M (with respect to τ) as

χ(M, τ) := V − E + F

where V,E and F are the number of vertices, edges and faces respectively of the triangulation τ . It is an amazing
fact that χ is a topological invariant, i.e. the number χ(M, τ) is independent of the triangulation τ . Moreover,
when ∂M = ∅, the Euler characteristic gives a complete set of invariants.

Theorem 12 (Classification of closed orientable surfaces). For each non-negative integer g, there is exact one
(up to homeomorphism) closed orientable surface Σg with χ(Σg) = 2− 2g.

4. Differential Equations*

A working knowledge of the materials covered in MATH 3270 (or its equivalence) is helpful for the course. A
good reference is Chapters 2 and 7 of Boyce and DiPrima’s Elementary differential equations and boundary value
problems.

Theorem 13 (Fundamental Theorem of ODEs). Let U ⊂ Rn be an open subset and I ⊂ R be an open interval
containing 0. Suppose x0 ∈ U . If F : U × I → Rn is Lipschitz in x (i.e. there exists a constant C > 0 such that
|F (x, t)− F (y, t)| ≤ C|x− y| for all x, y ∈ U , t ∈ I), then the differential equation

dx

dt
= F (x, t), x(0) = x0

has a unique solution x = x(t, x0) defined for all t in some sub-interval I ′ ⊂ I containing 0. Moreover, if F is
Ck, then x is Ck as a function of both t and the initial condition x0.

In the case of linear equations, we have a stronger global result.

Theorem 14 (Global existence for first order linear ODEs). Suppose A(t) is a continuous n×n matrix function
defined on an interval I ⊂ R. Then the differential equation

dx

dt
= A(t)x(t), x(0) = x0

has a unique solution on the whole interval I.


