THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH4030 Differential Geometry Solution of Assignment 1

1. (a)

$$
\alpha(s) = \left(\frac{1}{3}(1+s)^{\frac{3}{2}}, \frac{1}{3}(1-s)^{\frac{3}{2}}, \frac{1}{\sqrt{2}}s\right)
$$

$$
\alpha^{'}(s) = \left(\frac{1}{2}(1+s)^{\frac{1}{2}}, -\frac{1}{2}(1-s)^{\frac{1}{2}}, \frac{1}{\sqrt{2}}\right)
$$

Since $|\alpha'(s)|^2 = \frac{1}{4}$ 4 $(1 + s) + \frac{1}{4}$ 4 $(1-s)+\frac{1}{2}$ 2 $= 1$, we know that $\alpha(s)$ is p.b.a.l.

$$
\alpha^{''}(s) = \left(\frac{1}{4\sqrt{1+s}}, \frac{1}{4\sqrt{1-s}}, 0\right)
$$

$$
|\alpha''(s)|^2 = \frac{1}{16(1+s)} + \frac{1}{16(1-s)}
$$

$$
= \frac{1}{8(1-s^2)}
$$

So we have that

$$
T = \alpha'(s)
$$

= $\left(\frac{1}{2}(1+s)^{\frac{1}{2}}, -\frac{1}{2}(1-s)^{\frac{1}{2}}, \frac{1}{\sqrt{2}}\right)$

$$
N = \frac{T'}{|T'|}
$$

= $\frac{\alpha''}{|\alpha''|}$
= $2\sqrt{2}\sqrt{1-s^2} \left(\frac{1}{4\sqrt{1+s}}, \frac{1}{4\sqrt{1-s}}, 0\right)$
= $\left(\frac{\sqrt{2(1-s)}}{2}, \frac{\sqrt{2(1+s)}}{2}, 0\right)$

$$
B = T \times N
$$

=
$$
\left(-\frac{\sqrt{1+s}}{2}, \frac{\sqrt{1-s}}{2}, \frac{\sqrt{2}}{2}\right)
$$

Then we compute κ and $\tau,$

$$
\kappa = |T'|
$$

= $\frac{1}{2\sqrt{2(1-s^2)}}$

$$
\tau = \langle B', N \rangle
$$

= $\left\langle \left(-\frac{1}{4\sqrt{1+s}}, -\frac{1}{4\sqrt{1-s}}, 0 \right), \left(\frac{\sqrt{2(1-s)}}{2}, \frac{\sqrt{2(1+s)}}{2}, 0 \right) \right\rangle$
= $-\frac{\sqrt{2}}{8} \left(\sqrt{\frac{1-s}{1+s}} + \sqrt{\frac{1+s}{1-s}} \right)$
= $-\frac{\sqrt{2}}{8} \left(\frac{1-s+1+s}{\sqrt{1-s^2}} \right)$
= $-\frac{\sqrt{2}}{4\sqrt{1-s^2}}$

(b)

$$
\alpha(t) = \left(\sqrt{1+t^2}, t, \log t + \sqrt{1+t^2}\right)
$$

$$
\alpha'(t) = \left(\frac{t}{\sqrt{1+t^2}}, 1, \frac{t + \sqrt{1+t^2}}{t(\sqrt{1+t^2}) + (1+t^2)}\right)
$$

$$
= \left(\frac{t}{\sqrt{1+t^2}}, 1, \frac{1}{\sqrt{1+t^2}}\right)
$$

Since $|\alpha'(t)|^2 = 2$, we set $\beta(s) = \alpha(\frac{s}{\sqrt{2}})$. Then we have

$$
\beta'(s) = \left(\frac{\frac{s}{2}}{\sqrt{1+\frac{s^2}{2}}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}\sqrt{1+\frac{s^2}{2}}}\right)
$$

$$
= \left(\frac{s}{\sqrt{2}\sqrt{2+s^2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2+s^2}}\right)
$$

$$
\beta''(s) = \left(\frac{\sqrt{2}}{(2+s^2)^{\frac{3}{2}}}, 0, -\frac{s}{(2+s^2)^{\frac{3}{2}}}\right)
$$

$$
|\beta''(s)|^2 = \frac{1}{(2+s^2)^2}
$$

So we have that

$$
T = \beta'(s)
$$

= $\left(\frac{s}{\sqrt{2\sqrt{2+s^2}}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2+s^2}}\right)$

$$
N = \frac{T'}{|T'|}
$$

$$
\beta''
$$

$$
= \frac{p}{|\beta''|}
$$

=
$$
\left(\frac{\sqrt{2}}{\sqrt{2+s^2}}, 0, -\frac{s}{\sqrt{2+s^2}}\right)
$$

$$
B = T \times N
$$

= $\left(-\frac{s}{\sqrt{2\sqrt{2+s^2}}}, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2+s^2}} \right)$

Then we compute κ and $\tau,$

$$
\kappa = |T'|
$$

$$
= \frac{1}{2 + s^2}
$$

$$
\tau = \langle B', N \rangle
$$

= $\left\langle \left(-\frac{\sqrt{2}}{(2+s^2)^{\frac{3}{2}}}, 0, \frac{s}{(2+s^2)^{\frac{3}{2}}} \right), \left(\frac{\sqrt{2}}{\sqrt{2+s^2}}, 0, -\frac{s}{\sqrt{2+s^2}} \right) \right\rangle$
= $\frac{-2-s^2}{(2+s^2)^2}$
= $-\frac{1}{2+s^2}$

2. (a)

$$
\alpha^{'}(t) = (1, f^{'}(t))
$$

$$
|\alpha^{'}(t)|^2 = 1 + (f^{'}(t))^2 > 1
$$

So $\alpha(t)$ is regular.

(b)

$$
length = \int_{a}^{b} |\alpha'(t)| dt
$$

$$
= \int_{a}^{b} \sqrt{1 + (f'(t))^{2}} dt
$$

(c)

$$
\alpha^{''}(t)=(0,f^{''}(t))
$$

$$
\kappa = \frac{det(\alpha^{'}(t), \alpha^{''}(t))}{|\alpha^{'}(t)|^3}
$$

$$
= \frac{f^{''}(t)}{(1 + (f'(t))^2)^{\frac{3}{2}}}
$$

3. (a)

$$
\alpha'(t) = (1, \sinh t)
$$

$$
|\alpha'(t)|^2 = 1 + \sinh^2 t = \cosh^2 t
$$

$$
= \int_0^b \cosh t dt
$$

$$
length = \int_0^{\infty} \cosh t dt
$$

= sinh(b) - sinh(0)
= sinh(b)

(b)

$$
s(t) = \int_0^t |\alpha'(x)| dx
$$

$$
= \int_0^t \cosh x dx
$$

$$
= \sinh(t)
$$

So we have $t = \sinh^{-1} s$.

$$
\beta(s) = \alpha(\sinh^{-1} s)
$$

= $(\sinh^{-1} s, \cosh(\sinh^{-1} s))$
= $(\sinh^{-1} s, \sqrt{[\sinh(\sinh^{-1} s)]^2 + 1})$
= $(\sinh^{-1} s, \sqrt{s^2 + 1})$

And $s_0 = length = \sinh(b)$

(c)

$$
\kappa_{\beta} = \langle \beta''(s), J(\beta'(s)) \rangle
$$

= $\left\langle \left(-\frac{s}{(s^2 + 1)^{\frac{3}{2}}}, \frac{1}{(s^2 + 1)^{\frac{3}{2}}} \right), \left(-\frac{s}{\sqrt{s^2 + 1}}, \frac{1}{\sqrt{s^2 + 1}} \right) \right\rangle$
= $\frac{s^2 + 1}{(s^2 + 1)^2}$
= $\frac{1}{s^2 + 1}$

4. (a)

$$
\alpha'(t) = (-\sin t + \frac{1}{\sin t}, \cos t)
$$

$$
|\alpha'(t)|^2 = \frac{\cos^2 t}{\sin^2 t}
$$

So the arc length of $\alpha(t)$, $t \in \left(\frac{\pi}{2}\right)$ $\frac{\pi}{2}, \frac{\pi}{2} + s$) is

$$
length = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}+s} -\frac{\cos t}{\sin t} dt
$$

= -\log(\sin(\frac{\pi}{2}+s)) + \log(\sin(\frac{\pi}{2}))
= -\log(\cos s)

(b)

$$
\alpha''(t) = \left(-\cos t - \frac{\cos t}{\sin^2 t}, -\sin t\right)
$$

The signed curvature of the tractrix is

$$
\kappa = \frac{\det(\alpha'(t), \alpha''(t))}{|\alpha'(t)|^3}
$$

$$
= \frac{\sin^2 t - 1 + \cos^2 t + \frac{\cos^2 t}{\sin^2 t}}{-\frac{\cos^3 t}{\sin^3 t}}
$$

$$
= -\tan t
$$

(c) At the point $\alpha(t)$, the equation of the tangent line is

$$
(x(s), y(s)) = \alpha(t) + s\alpha'(t)
$$

When $y(s) = 0$,

$$
\sin t + s \cos t = 0
$$

$$
s=-\tan t
$$

So the length between $\alpha(t)$ and $(x(-\tan t),0)$ is

$$
|s\alpha^{'}(t)| = |- \tan t \frac{\cos t}{\sin t}| = 1
$$

5. Consider the function $f(s) = |\alpha(s)|^2 = \langle \alpha(s), \alpha(s) \rangle$. Since $f(s)$ attains a maximum at $s = s_0$, we have

$$
0 \ge f''(s_0)
$$

= 2 $\alpha(s_0), \alpha''(s_0) > +2 < \alpha'(s_0), \alpha'(s_0) >$
= 2 $\alpha(s_0), \alpha''(s_0) > +2$

So we get $<\alpha(s_0), \alpha''(s_0)>\leq -1.$

$$
1 \leq | < \alpha(s_0), \alpha^{''}(s_0) > | \leq |\alpha(s_0)||\alpha^{''}(s_0)| = R|\alpha^{''}(s_0)|
$$

By the assumption that $\alpha(t)$ is p.b.a.l,

$$
\kappa(s_0) = |\alpha^{''}(s_0)| \ge \frac{1}{R}
$$

6. When $\alpha(a) = \alpha(b)$, the result is trivial.

So assume that $\alpha(a) \neq \alpha(b)$, and let $\vec{n} =$ $\alpha(b) - \alpha(a)$ $\frac{\alpha(\sigma)}{|\alpha(b) - \alpha(a)|}.$ By the fundamental theorem of calculus, we have

$$
\alpha(b) - \alpha(a) = \int_a^b \alpha'(t) dt
$$

Then

$$
|\alpha(b) - \alpha(a)| = \langle \alpha(b) - \alpha(a), \vec{n} \rangle
$$

$$
= \langle \int_a^b \alpha'(t)dt, \vec{n} \rangle
$$

$$
= \int_a^b \langle \alpha'(t), \vec{n} \rangle dt
$$

$$
\leq \int_a^b |\alpha'(t)| |\vec{n}| dt
$$

$$
= \int_a^b |\alpha'(t)| dt
$$

$$
= length(\alpha)
$$

7. Let $\alpha(t) : I \mapsto R^3$ be a regular curve. Let $\beta(s) = \alpha(\phi(s))$ be p.b.a.l. where $t = \phi(s)$ is an increasing function. By the definition, $\tau = \langle B', N \rangle = - \langle B, N' \rangle$.

We first compute the relation between $\phi(s)$ and $\alpha(t)$. Since $\beta(s)$ is p.b.a.l, we have

$$
1 = |\beta'(s)| = |\alpha'(t)|\phi'(s)
$$

$$
\phi'(s) = \frac{1}{|\alpha'(t)|}
$$

Differentiate again, we get

$$
\begin{aligned}\n\phi''(s) &= \left(\langle \alpha'(t), \alpha'(t) \rangle^{-\frac{1}{2}} \right)' \\
&= -\frac{1}{2} \langle \alpha'(t), \alpha'(t) \rangle^{-\frac{3}{2}} (2 \langle \alpha'(t), \alpha''(t) \phi'(s) \rangle) \\
&= -\frac{\phi'(s)}{|\alpha'(t)|^3} \langle \alpha'(t), \alpha''(t) \rangle \\
&= -\frac{1}{|\alpha'(t)|^4} \langle \alpha'(t), \alpha''(t) \rangle\n\end{aligned}
$$

Then we compute the frame $\{T, N, B\}$ and $\kappa,$

$$
T = \beta'(s) = \alpha'(t)\phi'(s)
$$

\n
$$
T' = \alpha''(t)(\phi'(s))^2 + \alpha'(t)\phi''(s)
$$

\n
$$
\kappa^2 = |T'|^2
$$

\n
$$
= |\alpha''(t)|^2(\phi'(s))^4 + 2(\phi'(s))^2\phi''(s) < \alpha'(t), \alpha''(t) > + |\alpha'(t)|^2(\phi''(s))^2
$$

\n
$$
= \frac{|\alpha''(t)|^2}{|\alpha'(t)|^4} - 2\frac{1}{|\alpha'(t)|^2} - \frac{<\alpha'(t), \alpha''(t) >^2}{|\alpha'(t)|^4} + \frac{<\alpha'(t), \alpha''(t) >^2}{|\alpha'(t)|^8}|\alpha'(t)|^2
$$

\n
$$
= \frac{|\alpha''(t)|^2}{|\alpha'(t)|^4} - \frac{<\alpha'(t), \alpha''(t) >^2}{|\alpha'(t)|^6}
$$

\n
$$
= \frac{|\alpha''(t)|^2}{|\alpha'(t)|^4} - \frac{|\alpha'(t)|^2|\alpha''(t)|^2\cos^2\theta}{|\alpha'(t)|^6}
$$
where θ is the angle between $\alpha'(t)$ and $\alpha''(t)$
\n
$$
= \frac{|\alpha''(t)|^2}{|\alpha'(t)|^4} \sin^2\theta
$$

\n
$$
= \frac{|\alpha'(t)|^2}{|\alpha'(t)|^6}
$$

\n
$$
N = \frac{T'}{\kappa}
$$

\n
$$
= \frac{(\phi'(s))^2}{\kappa}\alpha''(t) + \frac{\phi''(s)}{\kappa}\alpha'(t)
$$

\n
$$
B = T \times N
$$

\n
$$
= \frac{(\phi'(s))^3}{\kappa}\alpha'(t) \times \alpha''(t)
$$

Finally,

$$
N' = \left(\frac{T'}{|T'|}\right)'
$$

=
$$
\frac{T''|T'| - T' \leq T', T'' >}{|T'|^2}
$$

=
$$
\frac{T''|T'|^2 - T' < T', T'' >}{|T'|^3}
$$

Since $B =$ $(\phi'(s))^3$ κ $\alpha'(t) \times \alpha''(t)$, to compute $\tau = - \langle B, N' \rangle$, we only need to compute the term $\alpha^{'''}$ in N'.

$$
\tau = - \langle B, N' \rangle
$$

= $-\frac{(\phi'(s))^3}{\kappa} \frac{1}{|T'|} (\phi'(s))^3 < \alpha'(t) \times \alpha''(t), \alpha'''(t) >$
= $-\frac{(\phi'(s))^6}{\kappa^2} < \alpha'(t) \times \alpha''(t), \alpha'''(t) >$
= $-\frac{<\alpha'(t) \times \alpha''(t), \alpha'''(t) >}{|\alpha'(t) \times \alpha''(t)|^2}$

8. (a) Let $\alpha(t_1) = \alpha(t_2)$,

$$
\frac{3t_1}{1+t_1^3} = \frac{3t_2}{1+t_2^3}
$$

$$
\frac{3t_1^2}{1+t_1^3} = \frac{3t_2^2}{1+t_2^3}
$$

If one of t_1, t_2 is zero, then $t_1 = t_2 = 0$. If none of t_1, t_2 is zero,

$$
\frac{1}{t_1} = \frac{1}{t_2}
$$

$$
t_1 = t_2
$$

So $\alpha(t)$ is one to one.

(b) $\alpha(0) = (0, 0)$ As $t \to \infty$, $\alpha(t) = \left(\frac{3t}{1+t}\right)$ $\frac{3c}{1+t^3}$, $3t^2$ $1 + t^3$ \setminus \rightarrow $(0, 0)$. So $\alpha(t) : (-1, \infty) \mapsto R^2$ is not a homeomorphism onto its image. 9. (a) $\theta \Rightarrow W.L.O.G$, we may assume that $\alpha(s) \subset B_R(0)$.

$$
\langle \alpha, \alpha \rangle = R
$$

\n
$$
\langle \alpha, \alpha' \rangle = 0
$$

\nwe get $\langle \alpha, T \rangle = 0$.
\n
$$
\langle \alpha, \alpha' \rangle' = 0
$$

\n
$$
\langle \alpha, \alpha' \rangle' = 0
$$

\n
$$
\langle \alpha, \alpha'' \rangle + \langle \alpha', \alpha' \rangle = 0
$$

\n
$$
\langle \alpha, \alpha'' \rangle + 1 = 0
$$

\nwe get $\langle \alpha, \kappa N \rangle = -1$.

$$
(<\alpha, \alpha^{''} > +1)' = 0
$$

$$
<\alpha^{'}, \alpha^{''} > + <\alpha, \alpha^{'''} > = 0
$$

$$
<\alpha, \alpha^{'''} > = -<\alpha^{'}, \alpha^{''} > = -\frac{1}{2} < \alpha^{'}, \alpha^{'} > = 0
$$

we get $\langle \alpha, \alpha''' \rangle = 0$.

$$
\alpha''' = (\alpha'')'
$$

= $(\kappa N)'$
= $\kappa' N + \kappa N'$
= $\kappa' N + \kappa(-\kappa T - \tau B)$
= $-\kappa^2 T + \kappa' N - \kappa \tau B$

So we have

$$
\langle \alpha, T \rangle = 0
$$

$$
\langle \alpha, N \rangle = -\frac{1}{\kappa}
$$

$$
\langle \alpha, -\kappa^2 T + \kappa' N - \kappa \tau B \rangle = 0
$$

This gives us $\alpha = -\frac{1}{\kappa}N - \frac{\kappa'}{\kappa^2 \tau}B = -\frac{1}{\kappa}N + \frac{1}{\tau}$ $rac{1}{\tau}(\frac{1}{\kappa})$ $\frac{1}{\kappa}$)'B.

$$
\alpha' = T
$$

$$
-(\frac{1}{\kappa})'N - \frac{1}{\kappa}N' + (\frac{1}{\tau}(\frac{1}{\kappa})')'B + \frac{1}{\tau}(\frac{1}{\kappa})'B' = T
$$

$$
\frac{\kappa'}{\kappa^2}N - \frac{1}{\kappa}(-\kappa T - \tau B) + (\frac{1}{\tau}(\frac{1}{\kappa})')'B + \frac{1}{\tau}(\frac{1}{\kappa})'(\tau N) = T
$$

$$
(\frac{\tau}{\kappa} + (\frac{1}{\tau}(\frac{1}{\kappa})')'B = 0
$$

$$
\frac{\tau}{\kappa} + (\frac{1}{\tau}(\frac{1}{\kappa})')' = 0
$$

(b) $'' \Leftarrow''$ Given $\frac{\tau}{\kappa} + \left(\frac{1}{\tau}\left(\frac{1}{\kappa}\right)\right)$ $\frac{1}{\kappa}$ y' $y' = 0$. Define $P(s) = -\frac{1}{\kappa}N + \frac{1}{\tau}$ $rac{1}{\tau}(\frac{1}{\kappa})$ $\frac{1}{\kappa}$ ['] B . Then by the previous computation and the assumption,

$$
P'(s) = T = \alpha'(s)
$$

$$
(P(s) - \alpha(s))' = 0
$$

 $\alpha(s) - P(s) = P_0$ for some fixed point P_0 .

$$
\langle \alpha(s) - P_0, \alpha(s) - P_0 \rangle^{\prime} = 2 \langle \alpha(s) - P_0, \alpha^{'}(s) \rangle
$$

= 2 $\langle P(s), T \rangle$
= 2 $\langle -\frac{1}{\kappa} N + \frac{1}{\tau} (\frac{1}{\kappa})^{'} B, T \rangle$
= 0

So $|\alpha(s) - P_0| = R$ for some positive constant R. Which means $\alpha(s)$ lies on some sphere.