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Hard problems in Chapter 5

5.1-4(c)

The range of sinx is [−1, 1]. So the values of JsinxK can be taken are −1, 0, 1.
By solving sinx < 0, sinx < 1, sinx = −1, sinx = 1, we get

JsinxK =

 1, x = 2πk + π
2 , k ∈ Z

0, x ∈ [2πk, π2 + 2πk) ∪ (π2 + 2πk, π + 2πk], k ∈ Z
−1, x ∈ (2πk − π, 2πk), k ∈ Z

So in the interior of those intervals, h(x) is continuous since h(x) is constant.
But at the boundary point, such as 2πk, π2 +2πk, 2πk+π, they are not continuous
since it will take different intergers at any intervals containing those points. So
the continous points of h(x) are (2πk−π, 2πk)∪ (2πk, π2 + 2πk)∪ (π2 + 2πk, π+
2πk), k ∈ Z.

5.1-9

(a). If f is continous at c ∈ A, then for any ε > 0, we can find δ > 0, such that
for any x ∈ (c− δ, c+ δ) ∩A, we have

|f(x)− f(c)| < ε

since A ⊂ B, we know for any x ∈ (c− δ, c+ δ) ∩B, we still have

|f(x)− f(c)| < ε

And since f, g agrees on B, so we get

|g(x)− g(c)| < ε

Hence, g is continuous at c.
(b). Choose f(x) as

f(x) =

{
1 x ≥ 0
0 x < 0

And we choose A = R, B = [0,+∞). So on B, g is a constant function 1 and it
is continuous at 0. But clearly, f(x) is not continuous at x = 0.
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5.1-14

We proof that, given any open interval (a, b), the function k(x) is unbounded
on this interval. This means for any M > 0, we need to find some x0 ∈ (a, b)
such that |k(x0)| > M . We note that there are only finite number of rationals
with denominator less than M . (Note there are at most b−a+1

n rationals with
denominator equal to n.) So we can find a rational number x0 = p0

q0
with q0 > M

and p0, q0 have no common factor except 1. Hence we have k(x0) = q0 > M .
So we get k(x) is not bounded on this interval.

5.2-9

Let’s take arbitrary x0 ∈ R first. We will show that for any ε > 0, we have
|h(x0)| < ε.

Indeed, for any ε > 0, we can find δ > 0 such that |h(x)− h(x0)| < ε for
any |x− x0| < δ since h(x) is continous at x0. We claim that we can find
m,n such that m

2n ∈ (x0 − δ, x0 + δ). If so, we have h( m2n ) = 0, and hence
|h(x0)| = |h(x0)− h( m2n )| < ε and we finish the proof.

Proof of claim. We first choose 2n ≥ 1 + n > 1
δ , that is 1

2n < δ and
consider the set A = {m ∈ Z : m

2n ≤ x0 − δ}. This set has an upper bound
(i.e. 2n(x0 − δ)), so we can take u = supA. It can be easily showed that u is
still an integer. (If not, the integer part of u is also an upper bound leading
to a contradiction). Now we choose m = u + 1. Clearly m

2n > x0 − δ but
we also note u ∈ A (If not, then u − 1 will be an upper bound), we have
m−1
2n ≤ x0− δ =⇒ m

2n ≤ x0− δ+ 1
2n < x0 + δ. This means m

2n ∈ (x0− δ, x0 + δ)
and finish the proof of claim.

5.2-12

Note that f(0) = f(0) + f(0) which will imply f(0) = 0. And note that
f(x) = f(x− x0) + f(x0). So if we take x→ x0, then we have x− x0 → 0. The
right side f(x)→ f(x0) since f(x) is continuous at x0. Then for the right side,
we will have limx→0 f(x) + f(x0). Combining this we get

lim
x→0

f(x) = 0

which indicates f(x) is continous at x = 0. Again, for any y0 ∈ R, we have

f(x) = f(x− y0) + f(y0)

Then taking x→ y0, we will get

lim
x→y0

f(x) = lim
x→y0

f(x− y0) + f(y0) = lim
x→0

f(x) + f(y0) = 0 + f(y0) = f(y0)

This shows f is continous at y0. Hence f is continous at y0. Since y0 is arbitrary,
we get f is indeed continuous at every point of R.
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5.3-4

Given any polynomial p(x) of odd degree, without loss of generality, denote

p(x) :=
∑

2n+1
i=0 aix

i, a2n+1 = 1, n ∈ N.

Also denote M := max{|a0| , · · · |a2n|}. For x > max{2nM + 1, 1}, we have

p(x) =
∑

2n+1
i=0 aix

i

≥ x2n+1 −M(x2n + · · ·+ x+ 1)

≥ x2n+1 − 2nMx2n (xk ≥ xl,∀x ≥ 1, k ≤ l ∈ N)

= x2n(x− 2nM)

> (2nM + 1)2n > 0.

and similarly p(x) < 0 for x < −max{2nM + 1, 1} = min{−2nM − 1,−1}. Set
R0 = max{2nM + 1, 1} so that p(R0)p(−R0) < 0. We deduce that there exists
at least one real root for p(x) on [−R0, R0] by Theorem 5.3.5.

5.3-15

For open intervals, there are three kind of intervals as following

� (a, b) with a < b ≤ 0.

� (a, b) with a < 0 < b.

� (a, b) with 0 ≤ a < b.

For the first kind I = (a, b) with a < b ≤ 0, we have f(I) = (b2, a2), which is an
open intervals.

For the second kind I = (a, b), a < 0 < b, we have f(I) = [0,max{a, b}],
which is closed.

For the third kind, I = (a, b), 0 ≤ a < b, we have F (I) = (a2, b2), which is
an open intervals. So f(I) is an open intervals if and only if open intervals I
which does not contains 0.

For the closed intervals I, f(I) will always be a closed intervals by Theorem
5.3.9.

5.3-17

We proof the following claim first.
If f : [0, 1] → R is continous and has two different values a, b with a < b,

then f cannot has only rational (or irrational) values.
Indeed, suppose f(x1) = a, f(x2) = b, then for any c ∈ (a, b), by Interme-

diate Value Theorem, we can find x0 ∈ [x1, x2]or[x2, x1] such that f(x0) = c.
By Density Theorem, we can always find a rational number in (a, b), and we
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can also find a irrational number in (a, b). So this means f has to take rational
values and irrational values. So the claim is proofed.

So from this claim, we can see that if f is not a constant, f will take at least
two different values and we can write these two vaules as a, b with a < b and
hence f has to take both rational and irrational values.

Hence if f has only rational (irrational) values, f has to be a constant.

5.4-12

Since f is uniformly continuous on [a,∞), given ε > 0, there exists δ1 > 0 so
that if x, u ∈ [a,∞) and |x− u| < δ1, then

|f(x)− f(u)| < ε.

Since f is continuous on [0, a + 1], f is uniformly continuous on [0, a + 1] by
Theorem 5.4.3. Given ε > 0, there exists δ2 > 0 so that if x, u ∈ [0, a + 1] and
|x− u| < δ2, then

|f(x)− f(u)| < ε.

Denote δ = min{δ1, δ2, 1}. Note that either x, u ∈ [0, a+ 1] or x, u ∈ [a,∞) for
any x, u ∈ [0,∞) with |x− u| < δ. Thus |f(x)− f(u)| < ε in either case.

5.4-14

For any x ∈ R, x ∈ [kxp, kxp + p) for some kx ∈ Z and x − kxp ∈ [0, p), since
R = ∪k∈Z[kp, kp + p). Denote M = sup{|f(x)| , x ∈ [0, p]}. M < ∞ since f is
continuous and bounded on [0, p]. We have

|f(x)| = |f(x− kxp)| ≤M, ∀x ∈ R,

where the periodicity of f is applied. We deduce that f is bounded on R.
To show the uniform continuity, first notice that f is uniformly continuous on
[0, 2p]. Given ε > 0, there exists δ0(ε) > 0 so that if x, u ∈ [0, 2p] satisfying
|x− u| < δ0, then |f(x)− f(u)| < ε. Now we show the uniform continuity on R.
Given ε > 0, denote δ = min{p, δ0(ε)}. Without loss of generality, we assume
x ≤ u. For any x, u ∈ R satisfying |x− u| < δ, there are two cases.

(i) u ∈ [kxp, kxp+p). Then x−kxp, u−kxp ∈ [0, p] and |(x− kxp)− (u− kxp)| =
|x− u| < δ. Thus |f(x)− f(u)| = |f(x− kxp)− f(u− kxp)| < ε.

(ii) u ≥ kxp + p. Then u < x + δ < kxp + p + p < kxp + 2p. We have
x− kxp, u− kxp ∈ [0, 2p] and |(x− kxp)− (u− kxp)| = |x− u| < δ. Thus
|f(x)− f(u)| = |f(x− kxp)− f(u− kxp)| < ε.

Combine these two cases and we deduce that f is uniformly continuous on R.
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