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Hard problems in Chapter 5

5.1-4(c)
The range of sinz is [—1,1]. So the values of [sinz] can be taken are —1,0, 1.
By solving sinz < 0,sinz < 1,sinz = —1,sinx = 1, we get
I,  z=2k+ZIkeZ
[sinz] = ¢ O, x € 2k, T+ 27k) U (5 + 27k, m + 27k], k € Z

-1, x € (2rk —m,2rk), k € Z

So in the interior of those intervals, h(x) is continuous since h(z) is constant.
But at the boundary point, such as 27k, 5 +2mk, 2rk+m, they are not continuous
since it will take different intergers at any intervals containing those points. So
the continous points of h(x) are (27k — 7, 27k) U (27k, § +27k) U (5 + 27k, 7 +
2rk), k € Z.

5.1-9

(a). If f is continous at ¢ € A, then for any € > 0, we can find 6 > 0, such that
for any « € (¢ —9d,c+6) N A, we have

f@) = Fe)] <
since A C B, we know for any « € (¢ — d,¢+ §) N B, we still have
f@) = F@)] <
And since f, g agrees on B, so we get
l9(z) —g(c)| <€
Hence, g is continuous at c.

(b). Choose f(z) as
r={y 5%

z <0

And we choose A =R, B =[0,+00). So on B, g is a constant function 1 and it
is continuous at 0. But clearly, f(z) is not continuous at x = 0.



5.1-14

We proof that, given any open interval (a,b), the function k(x) is unbounded
on this interval. This means for any M > 0, we need to find some zy € (a,b)
such that |k(zo)| > M. We note that there are only finite number of rationals
with denominator less than M. (Note there are at most ’H%l rationals with
denominator equal to n.) So we can find a rational number g = 7;—3 with g > M
and pg, o have no common factor except 1. Hence we have k(zo) = g0 > M.
So we get k(x) is not bounded on this interval.

5.2-9

Let’s take arbitrary xyp € R first. We will show that for any ¢ > 0, we have
|h(zo)| < €.

Indeed, for any € > 0, we can find § > 0 such that |h(x) — h(zg)| < € for
any |z —xg| < ¢ since h(x) is continous at xg. We claim that we can find
m,n such that 3% € (zo — d,29 + ). If so, we have h(g%) = 0, and hence
|h(z0)| = |h(x0) — h(F%)| < € and we finish the proof.

Proof of claim. We first choose 2™ > 1 +n > %, that is 2% < ¢ and
consider the set A = {m € Z : 3 < x9 — 0}. This set has an upper bound
(i.e. 2™(xzg — 0)), so we can take u = sup A. It can be easily showed that w is
still an integer. (If not, the integer part of w is also an upper bound leading
to a contradiction). Now we choose m = u 4+ 1. Clearly 3 > 20 — ¢ but
we also note v € A (If not, then v — 1 will be an upper bound), we have
7”2;1 <z9—0 = 57 < 1:0—54-2% < 20+ 0. This means i+ € (xg — 0,29 +9)
and finish the proof of claim.

5.2-12

Note that f(0) = f(0) + f(0) which will imply f(0) = 0. And note that
f(x) = f(x —x0) + f(x0). So if we take © — x, then we have © — xg — 0. The
right side f(x) — f(zg) since f(x) is continuous at xy. Then for the right side,
we will have lim,_,q f(z) + f(zo). Combining this we get

lim f(x) =0

z—0

which indicates f(x) is continous at x = 0. Again, for any yo € R, we have

f(z) = f(z —yo) + f(vo)

Then taking x — yo, we will get

lim f(z) = JLH;O f(& =yo) + f(yo) = lim f(2) + f(yo) = 0+ f(y0) = f(vo)

T—Yo

This shows f is continous at yy. Hence f is continous at yg. Since yq is arbitrary,
we get f is indeed continuous at every point of R.



5.3-4

Given any polynomial p(x) of odd degree, without loss of generality, denote
p(x) = Z?gb"laixi, aont1 = 1,m € N.
Also denote M := max{|ag|, - |agn|}. For > max{2nM + 1,1}, we have

pl) =Y e
Z$2n+1 _M<x2"+...+x+1)
> 22 oM (2% >l Vo > 1,k <l eN)
= xzn(x - QTLM)
> (2nM +1)*" > 0.

and similarly p(z) < 0 for < —max{2nM + 1,1} = min{—-2nM —1,—1}. Set
Ry = max{2nM + 1,1} so that p(Ro)p(—Rp) < 0. We deduce that there exists
at least one real root for p(z) on [—Ry, Ro] by Theorem 5.3.5.

5.3-15

For open intervals, there are three kind of intervals as following
e (a,b) with a <b<0.
e (a,b) with a <0 <b.
e (a,b) with 0 <a <b.

For the first kind I = (a,b) with a < b < 0, we have f(I) = (b%, a?), which is an
open intervals.

For the second kind I = (a,b), a < 0 < b, we have f(I) = [0, max{a,b}],
which is closed.

For the third kind, I = (a,b), 0 < a < b, we have F(I) = (a?,b?), which is
an open intervals. So f(I) is an open intervals if and only if open intervals I
which does not contains 0.

For the closed intervals I, f(I) will always be a closed intervals by Theorem
5.3.9.

5.3-17

We proof the following claim first.

If f:]0,1] — R is continous and has two different values a,b with a < b,
then f cannot has only rational (or irrational) values.

Indeed, suppose f(z1) = a, f(xz2) = b, then for any ¢ € (a,b), by Interme-
diate Value Theorem, we can find zg € [r1,z2]or[zs, 1] such that f(zo) = c.
By Density Theorem, we can always find a rational number in (a,b), and we



can also find a irrational number in (a,b). So this means f has to take rational
values and irrational values. So the claim is proofed.

So from this claim, we can see that if f is not a constant, f will take at least
two different values and we can write these two vaules as a,b with a < b and
hence f has to take both rational and irrational values.

Hence if f has only rational (irrational) values, f has to be a constant.

5.4-12

Since f is uniformly continuous on [a,o0), given € > 0, there exists d; > 0 so
that if z,u € [a,00) and |z — u| < &1, then

|f(z) = flu)] <e.

Since f is continuous on [0,a + 1], f is uniformly continuous on [0,a + 1] by
Theorem 5.4.3. Given € > 0, there exists d2 > 0 so that if z,u € [0,a + 1] and
|z — u| < da, then

|f(z) = f(u)] <e.

Denote 6 = min{dy, d2,1}. Note that either z,u € [0,a + 1] or z,u € [a,o0) for
any z,u € [0,00) with |z — u| < d. Thus |f(z) — f(u)| < € in either case.

5.4-14

For any € R, x € [kyp, k.p + p) for some k, € Z and = — k,p € [0, p), since
R = Ugezlkp, kp + p). Denote M = sup{|f(z)|,z € [0,p]}. M < oo since f is
continuous and bounded on [0, p]. We have

|f(@)] = [f(x — kap)| < M, Vz €R,

where the periodicity of f is applied. We deduce that f is bounded on R.

To show the uniform continuity, first notice that f is uniformly continuous on
[0,2p]. Given € > 0, there exists dp(e) > 0 so that if z,u € [0,2p] satisfying
|z — u| < dp, then | f(x) — f(u)] < . Now we show the uniform continuity on R.
Given ¢ > 0, denote 6 = min{p, dp(e)}. Without loss of generality, we assume
x < u. For any x,u € R satisfying |z — u| < §, there are two cases.

(i) u € [kxp, kzp+p). Then z—k,p, u—k.p € [0,p] and |(z — kyp) — (u — kzp)| =
|z —u| < §. Thus |f(z) — f(u)| = |f(z — kep) — f(u — kap)| < e.

(ii) u > kyp+p. Thenu < z+3J < kep+p+p < kup+ 2p. We have
x — kgp,u — kyp € [0,2p] and |(x — kzp) — (v — kzp)| = | — u| < 6. Thus
|f(@) = fu)| = |f(z — kop) — f(u— kap)| <e.

Combine these two cases and we deduce that f is uniformly continuous on R.



