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Hard problems in Chapter 4

4.1-12(c)

Suppose the limit exist, i.e. we assume

lim
x→0

(x+ sgn(x)) = a

for a real number a.
Now we choose ε = 1

4 , as the limit exists, we can find δ > 0 such that for all
0 < |x| < δ, we have

|x+ sgn(x)− a| < ε

we choose a real number x0 with 0 < x0 < δ. Then let x = x0 in above and
then we get

x0 + sgn(x0)− a < ε =⇒ 1− a < 1

4
=⇒ a >

3

4

And we can also choose x = −x0 and get

−x0 − sgn(−x0) + a < ε =⇒ a < −3

4

These two inequalities contridict with each other. Hence, the limit limx→0(x+
sgn(x)) does not exist.

4.1-14

(a). If L = 0, by definition of limit, we have for each ε > 0, we can find δ > 0
such that if 0 < |x− c| < δ, then we have∣∣f(x)2 − 0

∣∣ < ε2

This will imply |f(x)| < ε, or we can write it as |f(x)− 0| < ε. Hence by the
definition of limit,we get

lim
x→c

f(x) = 0

(b). If L 6= 0, we can take f(x) : R → R by letting f(x) = 1, x > c, f(x) =
−1, x ≤ c. Then we get limx→c f(x)2 = 1 but the limit limx→c f(x) does not
exist.
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4.1-15

(a) For any ε > 0, we can choose δ = ε, and then for any 0 < |x| < δ, we have

|f(x)− 0| = |x− 0| = |x| < δ = ε

if x is rational, and
|f(x)− 0) = |0− 0| = 0 < ε

if x is irrational. Hence
lim
x→0

f(x) = 0

(b) By Density Theorem 2.4.8 and Corollary 2.4.9, we can always find a
sequence of rational numbers (xn) such that limxn = c and a sequence of
irrational numbers (yn) such that lim yn = c. Then we will get lim f(xn) =
limxn = c and lim f(yn) = lim 0 = 0. But we note c 6= 0, this will lead to a
contradiction if you assume f(x) has a limit at c.

4.1-16

We can assume I = (a, b) for some a, b ∈ R. Then c will satisfies a < c < b.
First, we notice c is an accumulate point of I.

Now let’s suppose limx→c f(x) = L and we will show that limx→c f1(x) = L.
Indeed, by definition, for any ε > 0, we can find δ > 0 such that if x ∈ R

satisfies 0 < |x− c| < δ, then |f(x)− L| < ε. Since Vδ(c) ∩ I ⊂ Vδ(c), we know
for any x ∈ I ∩Vδ(c), we also have |f(x)− L| < ε. And since f(x) = f1(x) in I,
we have |f1(x)− L| < ε for x ∈ Vδ(c) ∩ I. Hence limx→c f1(x) = L.

Conversely, we suppose limx→c f1(x) = L . Then by definition we know that
for any ε > 0, we can find δ > 0 such that if x ∈ Vδ(c)∩ I, then |f1(x)− L| < ε.
Now we can choose δ′ = min{δ, c−a, b− c}. Hence, for any x ∈ Vδ′(c), we know
x ∈ I by the choice of δ′. Then we have

|f(x)− L| = |f1(x)− L| < ε

since f(x), f1(x) agrees on I. Then by the definition of limit, we get limx→c f(x) =
L.

4.1-17

The first part is essentially the same as above. If limx→c f(x) = L, then for any
ε > 0, we can find δ > 0 with |f(x)− L| < ε for x ∈ Vδ(c). This will still holds
for x ∈ J ∩ Vδ(c), which will imply |f1(x)− L| < ε for x ∈ Vδ(c) ∩ J . Hence
limx→c f2(x) = L.

But the converse might not true in general. For example, we take f(x) = 1
for x ≥ 0 and f(x) = 0 for x < 0. Take J = [0, 1]. Clearly f2(x) = 1 on J and
hence the limit limx→0 f2(x) = 1. But for f(x). the limit limx→0 f(x) does not
exist.
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4.2-10

Let choose f(x) = (x), g(x) = −(x) and c = 0. Clearly, both limit limx→0 f(x), limx→0 g(x)
do not exist. But we note f(x)+g(x) = 0 all the time, hence limx→0 f(x)+g(x)
exists and equal to 0. And we note f(x)g(x) = −1 for all x 6= 0. Then we also
know the limit limx→0 fg exists and equal to -1.

4.2-11(d)

We just note that −
√
x ≤

√
x sin( 1

x2 ) ≤
√
x and limx→0

√
x = 0, then by

squeezing theorem, we have

lim
x→0

√
x sin(

1

x2
) = 0

4.2-12

Let’s suppose L 6= 0.

By the definition of limit, for a specific ε = |L|
4 , we can find δ > 0 such that

if 0 < |x| < δ, then |f(x)− L| < |L|
4 .

Choose x0 such that 0 < |x0| < δ, then we set x = y = x0

2 in the original
equations and we get ∣∣∣2f(

x0
2

)− L
∣∣∣ = |f(x0)− L| < |L|

4

Then we get
∣∣f(x0

2 )− L
2

∣∣ < |L|
8 . In particular, we have∣∣∣f(

x0
2

)− L
∣∣∣ =

∣∣∣∣L− L

2
+
L

2
− f(

x0
2

)

∣∣∣∣ ≥ ∣∣∣∣L− L

2

∣∣∣∣− ∣∣∣∣L2 − f(
x0
2

)

∣∣∣∣ > 3|L|
8

which contridicts with the face∣∣∣f(
x0
2

)− L
∣∣∣ < |L|

4

since x0

2 ∈ Vδ(0).
Next, let’s show the limit limx→c f(x) exists for every c. For any ε > 0, we

can find δ > 0 with if 0 < |x| < δ, then |f(x)| < ε since L = 0. By replacing x by
c and y by x− c, we have f(x) = f(x− c) + f(c). Hence for any 0 < |x− c| < δ,
we have

|f(x− c)| < ε

by our choice of δ. Then we get

|f(x)− f(c)| = |f(x− c)| < ε

Hence by definition of limit, we know that limx→c f(x) = f(c).
Remark. This is a very famouse functional equations and there is a standard
way to deal with it. From f(x + y) = f(x) + f(y) and the fact limx→0 f(x)
exists, we can indeed show that f(x) = cx for a real number c.
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