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Hard problems in Chapter 4
4.1-12(c)

Suppose the limit exist, i.e. we assume
lim (x + sgn(x)) = a
z—0

for a real number a.
Now we choose € = i, as the limit exists, we can find § > 0 such that for all
0 < |z| < 8, we have
|z +sgn(x) —al <e
we choose a real number xg with 0 < g < §. Then let £ = g in above and
then we get

1 3
o +sgn(zg) —a<e = 1—a<1 = a>y

And we can also choose x = —x( and get

3
—x9 —sgn(—zo) +ta<e = a< ~1

These two inequalities contridict with each other. Hence, the limit lim,_,o(x +
sgn(zx)) does not exist.

4.1-14

(a). If L =0, by definition of limit, we have for each € > 0, we can find 6 > 0
such that if 0 < |x — ¢| < ¢, then we have

’f(x)2 - 0‘ < ¢

This will imply |f(z)| < €, or we can write it as |f(z) — 0] < e. Hence by the
definition of limit,we get
lim f(z) =0

Tr—c
(b). If L # 0, we can take f(x) : R — R by letting f(z) = 1,2 > ¢, f(x) =
—1,2 < ¢. Then we get lim,_,. f(x)? = 1 but the limit lim,_,. f(z) does not
exist.



4.1-15

(a) For any € > 0, we can choose § = ¢, and then for any 0 < |z| < §, we have
[f(@) =0l = |z - 0] = |z| <d =

if x is rational, and
[f(z) =0)=[0-0[=0<e

if x is irrational. Hence

lim f(z) =0

z—0

(b) By Density Theorem 2.4.8 and Corollary 2.4.9, we can always find a

sequence of rational numbers (x,) such that limz, = ¢ and a sequence of
irrational numbers (y,) such that limy, = ¢. Then we will get lim f(x,) =
limz,, = ¢ and lim f(y,) = lim0 = 0. But we note ¢ # 0, this will lead to a
contradiction if you assume f(z) has a limit at c.

4.1-16

We can assume I = (a,b) for some a,b € R. Then ¢ will satisfies a < ¢ < b.
First, we notice ¢ is an accumulate point of I.

Now let’s suppose lim,_,. f(z) = L and we will show that lim,_,. f1(z) = L.

Indeed, by definition, for any ¢ > 0, we can find § > 0 such that if z € R
satisfies 0 < |z — ¢| < §, then |f(z) — L| < €. Since V5(c) NI C Vs(c), we know
for any x € I NVs(c), we also have |f(x) — L| < e. And since f(z) = fi(z) in I,
we have |f1(x) — L| < € for z € Vs(c) N I. Hence lim,_,. f1(x) = L.

Conversely, we suppose lim, . f1(z) = L . Then by definition we know that
for any € > 0, we can find § > 0 such that if z € Vs(c) NI, then |fi(x) — L] <.
Now we can choose ' = min{d, ¢ —a,b—c}. Hence, for any = € Vi (c), we know
x € I by the choice of §’. Then we have

[f(z) = LI = [fi(x) = L| <€

since f(x), f1(z) agrees on I. Then by the definition of limit, we get lim, . f(z) =
L.

4.1-17

The first part is essentially the same as above. If lim,_,. f(z) = L, then for any
€ > 0, we can find § > 0 with |f(x) — L| < € for = € Vs(c). This will still holds
for x € J N Vs(c), which will imply |fi(z) — L] < € for = € Vs(c) N J. Hence
limg . fo(x) = L.

But the converse might not true in general. For example, we take f(z) =1
for x > 0 and f(x) =0 for © < 0. Take J = [0,1]. Clearly fa(z) =1 on J and
hence the limit lim,_,q fo(z) = 1. But for f(x). the limit lim,_,o f(x) does not
exist.



4.2-10

Let choose f(x) = (), g(x) = —(x) and ¢ = 0. Clearly, both limit lim,_¢ f(2), lim,_o g(x)
do not exist. But we note f(x)+g(z) = 0 all the time, hence lim,_,o f(z)+g(x)

exists and equal to 0. And we note f(x)g(z) = —1 for all x # 0. Then we also

know the limit lim,_.o fg exists and equal to -1.

4.2-11(d)

We just note that —y/z < /sin(s;) < & and lim,_,0 /2 = 0, then by
squeezing theorem, we have

. .1
lim \/Esm(ﬁ) =0

4.2-12

Let’s suppose L # 0.
By the definition of limit, for a specific € = %l, we can find § > 0 such that
if 0 < [a| <4, then |f(z) — L] < £,
Choose g such that 0 < |zg| < 4, then we set x = y = % in the original
equations and we get
L]

2750 — L] = 1f(@o) - LI <

Then we get |f(““’2—“)f%’ <%. In particular, we have
o L L Ll |L .,z |_ 3L
——L’:L—— LY [ Al [ e ) e
-t = |- F+ § sz |- 5| - [ - 1) > &

which contridicts with the face
Zo |L|
)] < 12
HESEN AR

since % € V;5(0).

Next, let’s show the limit lim,_,. f(z) exists for every c. For any € > 0, we
can find § > 0 with if 0 < |z| < ¢, then |f(x)| < e since L = 0. By replacing = by
cand y by x — ¢, we have f(z) = f(x —c¢) + f(c). Hence for any 0 < |z —¢| < 0,
we have

[f(z—c)f <e
by our choice of §. Then we get

[f(x) = f(O)] = |f(z —c)| <€

Hence by definition of limit, we know that lim,_,. f(z) = f(¢).
Remark. This is a very famouse functional equations and there is a standard
way to deal with it. From f(x +y) = f(z) + f(y) and the fact lim, o f(x)
exists, we can indeed show that f(x) = cx for a real number c.



