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Hard problems in Chapter 2

2.1-23

Clearly the conclusion holds for n = 1. So by Mathematical induction, we only
need to show when the conclusion holds for n = k, then it will hold for n = k+1.

First, if we have a < b, then by the assumption of induction, we will have
a® < b*(conclusion holds for k). Then

a" Tt < ab® < bk =pF !

On the other hand, if we have a**! < b**1, by the Order Properties, we have
three cases, a > b,a = b,a < b. we need to rule out first two cases.

Indeed, if a = b, we will have a**t! = b¥+1 which contradicts our assum-
tion. (You can also show this result by induction). And if a > b, then by our
conclusion holds for k, we will have a* > b¥ and similar as above, we can get
aft1 > bF*1 which also contradicts our assumtion. Hence we can only have
a < b. This will finish our proof.

2.1-25
cm < en 2ﬁ3cn<cm<:>1<cm7”
So if m > n, then again by 2.1-23 and 1 < ¢,
17" < P = 1< T = om < cn

1 1 .
If we have ¢m < cn, clearly, we cannot have m = n since ¢ = 1. We cannot
have m < n either since from above, we have

1 1
m<n = 1"""<"T" = 1>"" = ¢m >cn

a contradiction. So we only have m > n.



2.2-18

(a). Assume a > b first, then
1 1
§(a+b+\a—b\):§(a—|—b+a—b):a:max{a,b}

and

1 1
§(a+b—|a—b|):§(a+b—a+b):b:min{a,b}

Similar for other direction.
(b). Let’s assume a is the least one. That is, we assume a < b,a < ¢. Clearly,
we will have min{a, b, c} = a. And min{min{a,b}c} = min{a,c} = a. So we
have min{a, b, ¢} = min{min{a, b}c}.

Similarly, if b is the least one, we have the same conclusion. For the case ¢
is the least one, we just note that in either case min{a, b} = a or min{a,b} = b,
we will always have min{a, ¢} = ¢ and min{b, ¢} = ¢, which will implies

min{a, b, ¢} = ¢ = min{min{a, b}, c}

2.3-10

Let M4, Mp > 0 be the bounds for A, B respectively. Then for any s € AU B,
we will have s € A or s € B, which implies |s] < M4 or |s|] < Mp, and hence
|s| < max{M4, Mp}, which shows max{M4, Mp} is a bound for AU B.

Since the right side has only two elements, we can easlity proof that sup{sup A4, sup B} =
max{sup A, sup B}.

Let’s proof max{sup A, sup B} is a supremum of AU B. Clearly, for any s €
AUB, we will have s < sup A or s < sup B, which implies s < max{sup A, sup B}.
So we know that max{sup A, sup B} is an upper bound of AU B.

On the other hand, for any upper bound u of A U B, we know that u is
an upper bound of A, and hence u > sup A. Again, we know that u is an
upper bound of B since B C A U B which implies v > sup B. Then we will
have u > max{sup A4, sup B}. So max{sup A4,sup B} is the least upper bound
of AU B, which implies sup(A U B) = max{sup A4, sup B}

2.4-8

We will only proof the first statement, since the second one is similar with the
first one.

Let’s write a = sup{f(z) : « € X},b = sup{g(z) : « € X}. Now for any
element in s € {f(x) + g(x) : * € X}, we know s can be written as

s = f(xo) + g(w0)

for some xy € X. By the definition of supremum, we have

f(zo) <a, g(zo) <D



Hence, we get
s = f(zo) +g(z0) <a+b

for each s € {f(z) + g(x) : © € X}. This shows a + b is an upper bound, which
we can write as

sup{f(z)+g(z) :x € X} <sup{f(z) :x € X} +sup{g(z) :x € X}

Example of strict inequalities. Take X = R, f(z) = sinz,g(z) = cosz.
Clearly, we have sup{sinz + cosz : x € X} = v/2 and sup{sinz : € X} =
sup{cosz : x € X} = 1, which shows

sup{f(z) + g(z) :z € X} =V2 <2 =sup{f(z): z € X} +sup{g(x) : x € X}

2.4-12

Based on the symmetric of x,y, we can only proof the first part of equalities,
i.e. we will show

sup h(z,y) = supsup h(z,y)
z,y z Y

Or we can write it in another form
sup{h(z,y):x € X,y € Y} =sup{F(zr) 1z € X}
First, we note for any h(z,y) € {h(z,y) : x € X,y € Y}, we will have
h(z,y) < sup{h(z,y) 1y €Y} = F(x)

by the definition of supremum. Again by definition, we have F(z) < sup{F'(z) :
z e X}

This shows sup{F(x) : € X} is an upper bound of sup{h(z,y) : z € X,y €
Y'}. So the thing left is we need to show it is also the least one. Indeed, we fix
any s < sup{F(z) : z € X}. Again from the definition of supremum, we can
find an element in {F(z) : * € X}, says F(xg), such that F(z) > s. But we
notice that

{h(zo,y) :yeY} C{h(z,y):z € X, yeY}

so at least we will have
F(xzg) = sup{h(zo,y) € Y} < sup{h(z,y):x € X,y €Y}

This will imply s < sup{h(z,y) : x € X,y € Y}. Hence s is not an upper bound
of {h(z,y): z € X,y € Y}. Thus, we get

sup{h(z,y):x € X,y € Y} =sup{F(x) : z € X}



2.5-10

We will just follow the proof in textbook.

By definition, we have n = inf{b,, : n € N} if we set I,, = [an,b,]. Clearly
we will have n < b, for all n by the definition of infimum. We will show that
n > ay, for all n next.

Indeed, for any ax, we claim ay, is a lower bound of {b, : n € N}. This is
because, for any b, if n < k, we will have a; < b < b, by the definition of nest
intervals. And if n > k, we have a; < a,, < b, by the definition also. Hence ay
is a lower bound of {b, : n € N}, and it implies > ay. Hence for any n, we
have a,, <n <by, ie. ne€ I, Sone N2, L.

At least, we show [§,n] = NS, I,. Perhaps you need to show ¢ < 7 first to
make sure it is well defined. But this is clear by sup{a, : n € N} < inf{b, :
n € N} since for every m,n € N, we have a,, < b,. (By the definition of nested
intervals). So for any = € [¢,n] and definition of supremum and infimum, we
have

ap <E<z<n<b,

which implies « € (.2, I,. On the other hand, for any y € [\ _; I,,, we have
an, <y < b, for every n, and by the properties of supremum and infimum, we
have

§<y<n

Hence, we find

Enl=(]1In

D)

n=1



