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Hard problems in Chapter 2
2.1-23
Clearly the conclusion holds for n = 1. So by Mathematical induction, we only
need to show when the conclusion holds for n = k, then it will hold for n = k+1.

First, if we have a < b, then by the assumption of induction, we will have
ak < bk(conclusion holds for k). Then

ak+1 < abk < b · bk = bk+1

On the other hand, if we have ak+1 < bk+1, by the Order Properties, we have
three cases, a > b, a = b, a < b. we need to rule out first two cases.

Indeed, if a = b, we will have ak+1 = bk+1, which contradicts our assum-
tion. (You can also show this result by induction). And if a > b, then by our
conclusion holds for k, we will have ak > bk and similar as above, we can get
ak+1 > bk+1, which also contradicts our assumtion. Hence we can only have
a < b. This will finish our proof.

2.1-25
c

1
m < c

1
n ⇐⇒

2.1−23
cn < cm ⇐⇒ 1 < cm−n

So if m > n, then again by 2.1-23 and 1 < c,

1m−n < cm−n =⇒ 1 < cm−n =⇒ c
1
m < c

1
n

If we have c
1
m < c

1
n , clearly, we cannot have m = n since c0 = 1. We cannot

have m < n either since from above, we have

m < n =⇒ 1n−m < cn−m =⇒ 1 > cm−n =⇒ c
1
m > c

1
n

a contradiction. So we only have m > n.
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2.2-18
(a). Assume a > b first, then

1

2
(a+ b+ |a− b|) = 1

2
(a+ b+ a− b) = a = max{a, b}

and
1

2
(a+ b− |a− b|) = 1

2
(a+ b− a+ b) = b = min{a, b}

Similar for other direction.
(b). Let’s assume a is the least one. That is, we assume a ≤ b, a ≤ c. Clearly,
we will have min{a, b, c} = a. And min{min{a, b}c} = min{a, c} = a. So we
have min{a, b, c} = min{min{a, b}c}.

Similarly, if b is the least one, we have the same conclusion. For the case c
is the least one, we just note that in either case min{a, b} = a or min{a, b} = b,
we will always have min{a, c} = c and min{b, c} = c, which will implies

min{a, b, c} = c = min{min{a, b}, c}

2.3-10
Let MA,MB > 0 be the bounds for A,B respectively. Then for any s ∈ A ∪B,
we will have s ∈ A or s ∈ B, which implies |s| ≤ MA or |s| ≤ MB , and hence
|s| ≤ max{MA,MB}, which shows max{MA,MB} is a bound for A ∪B.

Since the right side has only two elements, we can easlity proof that sup{supA, supB} =
max{supA, supB}.

Let’s proof max{supA, supB} is a supremum of A∪B. Clearly, for any s ∈
A∪B, we will have s ≤ supA or s ≤ supB, which implies s ≤ max{supA, supB}.
So we know that max{supA, supB} is an upper bound of A ∪B.

On the other hand, for any upper bound u of A ∪ B, we know that u is
an upper bound of A, and hence u ≥ supA. Again, we know that u is an
upper bound of B since B ⊂ A ∪ B which implies u ≥ supB. Then we will
have u ≥ max{supA, supB}. So max{supA, supB} is the least upper bound
of A ∪B, which implies sup(A ∪B) = max{supA, supB}

2.4-8
We will only proof the first statement, since the second one is similar with the
first one.

Let’s write a = sup{f(x) : x ∈ X}, b = sup{g(x) : x ∈ X}. Now for any
element in s ∈ {f(x) + g(x) : x ∈ X}, we know s can be written as

s = f(x0) + g(x0)

for some x0 ∈ X. By the definition of supremum, we have

f(x0) ≤ a, g(x0) ≤ b
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Hence, we get
s = f(x0) + g(x0) ≤ a+ b

for each s ∈ {f(x) + g(x) : x ∈ X}. This shows a+ b is an upper bound, which
we can write as

sup{f(x) + g(x) : x ∈ X} ≤ sup{f(x) : x ∈ X}+ sup{g(x) : x ∈ X}

Example of strict inequalities. Take X = R, f(x) = sinx, g(x) = cosx.
Clearly, we have sup{sinx + cosx : x ∈ X} =

√
2 and sup{sinx : x ∈ X} =

sup{cosx : x ∈ X} = 1, which shows

sup{f(x) + g(x) : x ∈ X} =
√
2 < 2 = sup{f(x) : x ∈ X}+ sup{g(x) : x ∈ X}

2.4-12
Based on the symmetric of x, y, we can only proof the first part of equalities,
i.e. we will show

sup
x,y

h(x, y) = sup
x

sup
y

h(x, y)

Or we can write it in another form

sup{h(x, y) : x ∈ X, y ∈ Y } = sup{F (x) : x ∈ X}

First, we note for any h(x, y) ∈ {h(x, y) : x ∈ X, y ∈ Y }, we will have

h(x, y) ≤ sup{h(x, y) : y ∈ Y } = F (x)

by the definition of supremum. Again by definition, we have F (x) ≤ sup{F (x) :
x ∈ X}.

This shows sup{F (x) : x ∈ X} is an upper bound of sup{h(x, y) : x ∈ X, y ∈
Y }. So the thing left is we need to show it is also the least one. Indeed, we fix
any s < sup{F (x) : x ∈ X}. Again from the definition of supremum, we can
find an element in {F (x) : x ∈ X}, says F (x0), such that F (x0) > s. But we
notice that

{h(x0, y) : y ∈ Y } ⊂ {h(x, y) : x ∈ X, y ∈ Y }

so at least we will have

F (x0) = sup{h(x0, y) ∈ Y } ≤ sup{h(x, y) : x ∈ X, y ∈ Y }

This will imply s < sup{h(x, y) : x ∈ X, y ∈ Y }. Hence s is not an upper bound
of {h(x, y) : x ∈ X, y ∈ Y }. Thus, we get

sup{h(x, y) : x ∈ X, y ∈ Y } = sup{F (x) : x ∈ X}
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2.5-10
We will just follow the proof in textbook.

By definition, we have η = inf{bn : n ∈ N} if we set In = [an, bn]. Clearly
we will have η < bn for all n by the definition of infimum. We will show that
η ≥ an for all n next.

Indeed, for any ak, we claim ak is a lower bound of {bn : n ∈ N}. This is
because, for any bn, if n ≤ k, we will have ak ≤ bk ≤ bn by the definition of nest
intervals. And if n > k, we have ak ≤ an ≤ bn by the definition also. Hence ak
is a lower bound of {bn : n ∈ N}, and it implies η ≥ ak. Hence for any n, we
have an ≤ η ≤ bn, i.e. η ∈ In. So η ∈

∩∞
n=1 In.

At least, we show [ξ, η] = ∩∞
n=1In. Perhaps you need to show ξ ≤ η first to

make sure it is well defined. But this is clear by sup{an : n ∈ N} ≤ inf{bn :
n ∈ N} since for every m,n ∈ N, we have am ≤ bn. (By the definition of nested
intervals). So for any x ∈ [ξ, η] and definition of supremum and infimum, we
have

an ≤ ξ ≤ x ≤ η ≤ bn

which implies x ∈
∩∞

n=1 In. On the other hand, for any y ∈
∩∞

n=1 In, we have
an ≤ y ≤ bn for every n, and by the properties of supremum and infimum, we
have

ξ ≤ y ≤ η

Hence, we find

[ξ, η] =

∞∩
n=1

In

4


