MATH 2050C Mathematical Analysis I 2019-20 Term 2

3.1 - 5

(a) Note that $\frac{n}{n^2+1} < \frac{n}{n^2} = \frac{1}{n}$ So for any $\epsilon > 0$, we can choose a natural number K large such that $K > \frac{1}{\epsilon}$. Hence for any $n \ge K$, we have

$$|\frac{n}{n^2 + 1} - 0| = \frac{n}{n^2 + 1} < \frac{1}{n} \le \frac{1}{K} < \epsilon$$

Hence

$$\lim\left(\frac{n}{n^2+1}\right) = 0$$

(d) Note that

$$\left|\frac{n^2 - 1}{2n^2 + 3} - \frac{1}{2}\right| = \frac{5}{4n^2 + 6} < \frac{2}{n^2}$$

So for any $\epsilon > 0$, we choose a natural number K large such that $K > \sqrt{\frac{2}{\epsilon}}$, hence for any $n \ge K$,

$$\left|\frac{n^2 - 1}{2n^2 + 3} - \frac{1}{2}\right| < \frac{2}{n^2} \le \frac{2}{K^2} < \epsilon$$

Hence

$$\lim\left(\frac{n^2-1}{2n^2+3}\right) = \frac{1}{2}$$

3.1-6

(a) For any $\epsilon > 0$, we choose a natural number $K > \frac{1}{\epsilon^2}$, then for any $n \ge K$, we have

$$\left|\frac{1}{\sqrt{n+7}} - 0\right| = \frac{1}{\sqrt{n+7}} < \frac{1}{\sqrt{n}} \le \frac{1}{\sqrt{K}} < \epsilon$$

Hence,

$$\lim\left(\frac{1}{\sqrt{n+7}}\right) = 0$$

(d) Still for any $\epsilon > 0$, we choose a natural number K with $K > \frac{1}{\epsilon}$. Then for any $n \ge K$, we have

$$\left|\frac{(-1)^n n}{n^2 + 1} - 0\right| = \frac{n}{n^2 + 1} \le \frac{1}{n} \le \frac{1}{K} < \epsilon$$

So we get

$$\lim\left(\frac{(-1)^n n}{n^2 + 1}\right) = 0$$

3.1 - 8

First, let's show the following,

$$\lim(x_n) = 0 \implies \lim(|x_n|) = 0$$

For any $\epsilon > 0$, we can find a natural number K such that for any $n \ge K$, we have

$$|x_n - 0| < \epsilon$$

by the definition of $\lim(x_n) = 0$. Hence, we have

$$||x_n| - 0| = ||x_n|| = |x_n| < \epsilon$$

So we have

 $\lim(|x_n|) = 0$

by the definition of limit.

Second, let's show the reverse also holds,

$$\lim(|x_n|) = 0 \implies \lim(x_n) = 0$$

Again, for any $\epsilon > 0$, we can find a natural number K, such that for any $n \ge K$, we have $||x_n| - 0| < \epsilon$, this is just $|x_n| < \epsilon$. Hence for n > K, we have

$$|x_n - 0| = |x_n| < \epsilon$$

Hence

$$\lim(x_n) = 0$$

Example. Consider $(x_n) = ((-1)^n)$. Clearly (x_n) does not converge but $(|x_n|) = (|(-1)^n|) = (1)$, which is a constant sequence and converges.

3.1 - 10

By definiton, for any $\epsilon > 0$, we can find a natural number K, such that for n > K, we have

$$|x_n - x| < \epsilon$$

Now we choose a special ϵ , named $\epsilon = \frac{x}{2}$. $\epsilon > 0$ holds since x > 0. So there exists such K, and for any $n \ge k$, we have $|x_n - x| < \frac{x}{2}$. By the properties of absolute values, we have

$$-(x_n - x) < \frac{x}{2}$$

and it implies

$$x_n > \frac{x}{2} > 0$$

holds for all $n \ge K$.

3.1 - 14

We choose $a = \frac{1}{b} - 1$ (which implies $b = \frac{1}{1+a}$). Since 0 < b < 1, we will get a > 0. So we have

$$|nb^n - 0| = \frac{n}{(1+a)^n}$$

By the Binomial Theorem,

$$(1+a)^n = 1 + na + \frac{1}{2}n(n-1)a + \dots \ge \frac{n(n-1)}{2}a^2$$

Hence, we can choose K with $K > \frac{2}{\epsilon a^2} + 1$, then for $n \ge K$, we have

$$|nb^n - 0| \le \frac{2n}{n(n-1)a^2} = \frac{2}{(n-1)a^2} \le \frac{2}{(K-1)a^2} < \epsilon$$

This means

$$\lim(nb^n) = 0$$