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3.1-5

(a) Note that nQL_H
K large such that K > % Hence for any n > K, we have
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3.1-6

(a) For any € > 0, we choose a natural number K > 6%, then for any n > K,
we have
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(d) Still for any € > 0, we choose a natural number K with K > L. Then for
any n > K, we have
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3.1-8

First, let’s show the following,
lim(z,) =0 = lim(|z,|) =0

For any € > 0, we can find a natural number K such that for any n > K, we
have
|z, — 0] <€

by the definition of lim(x,) = 0. Hence, we have
| ‘JJ”| _0| = | ‘xn‘ | = |xn‘ <e€

So we have
lim(|z,|) =0

by the definition of limit.
Second, let’s show the reverse also holds,

lim(|z,|) =0 = lim(z,) =0

Again, for any € > 0, we can find a natural number K, such that for any n > K,
we have | |z,| — 0] < ¢, this is just |z,| < e. Hence for n > K, we have

|2 — 0] = |2y, | <€

Hence
lim(z,) =0

Example. Consider (x,) = ((—=1)"). Clearly (z,) does not converge but
(lzn|) = (|(=1)™]) = (1), which is a constant sequence and converges.

3.1-10

By definiton, for any € > 0, we can find a natural number K, such that for
n > K, we have
|z, — x| <€



Now we choose a special €, named € = 5. € > 0 holds since z > 0. So there

exists such K, and for any n > k, we have |z,, — 2| < §. By the properties of
absolute values, we have

x
—(xn —x) < 5
and it implies
x

holds for all n > K.

3.1-14

We choose a = § — 1(which implies b = ).

a > 0. So we have

Since 0 < b < 1, we will get

[nb"™ — 0] = ﬁ
By the Binomial Theorem,
(1+a)" = 1+na—|—%n(n—1)a—|—-~- > w&
Hence, we can choose K with K > % + 1, then for n > K, we have
b0 < —2 2 2,

n(n—1a?> (n—1)a? — (K —1)a?
This means

lim(nd™) =0



