MATH 2050C Mathematical Analysis I 2019-20 Term 2

Solution to Problem Set 1

Exercise 1

We will use the Algebraic Properties of
$$\mathbb{R}$$
 to proof.
a) $b \stackrel{(A3)}{=\!=\!=\!=} 0 + b \stackrel{(A4)}{=\!=\!=} (-a) + a + b \stackrel{(A2)}{=\!=\!=} (-a) + (a + b) = (-a) + 0 \stackrel{(A3)}{=\!=\!=} -a$
b) $-(-a) \stackrel{(A3)(A4)}{=\!=} a + (-a) + (-(-a)) \stackrel{(A2)}{=\!=} a + ((-a) + (-(-a))) \stackrel{(A4)}{=\!=} a$
 $a + 0 \stackrel{(A3)}{=\!=} a$
 $c) (-1)a \stackrel{(A3)(A4)}{=\!=} (-a) + a + (-1)a \stackrel{(A2)(M3)}{=\!=} (-a) + (1a + (-1)a) \stackrel{(D)(A4)}{=\!=} (-a) + 0a \stackrel{(Theorem 2.1.2(c),(A3)}{=\!=} -a$
 $d) (-1)(-1) \stackrel{(A3)(A4)}{=\!=} 1 + (-1) + (-1)(-1) \stackrel{(A2)(M3)}{=\!=} 1 + (1(-1) + (-1)(-1)) \stackrel{(D)(A4)}{=\!=} 1$

Exercise 6

Otherwise, suppose that $(p/q)^2 = 6$ so that p, q are integers and no common integer factors other than 1. Since $p^2 = 6q^2$, p is even and q is odd. Denote p = 2m and q = 2n + 1 for some integers m and n. Since $(2m)^2 = 6 \cdot (2n + 1)^2$, $6 = 4(m^2 - 6n^2 - 6n)$. This implies that 6 is a multiple of 4. Contradiction.

Exercise 11

a) Clearly, we will have $1/a \neq 0$. If not, we have $1 = a \cdot (1/a) = a \cdot 0 = 0$, a contradiction. By Theorem 2.1.8(a), we know $(1/a)^2 > 0$. Hence $a \cdot (1/a)^2 > 0$, which implies 1/a > 0.

By Algebraic Properties of \mathbb{R} , we have $1/(1/a) \xrightarrow{(M3)(M4)} (a \cdot (1/a)) \cdot (1/(1/a)) \xrightarrow{(M2)} a \cdot ((1/a) \cdot (1/(1/a))) \xrightarrow{(M4)(M3)} a$ b) Since 1/2 > 0, by Theorem 2.1.7 (c),

$$\frac{1}{2}a < \frac{1}{2}b$$

Again, use Theorem 2.1.7 (b), we have

$$\frac{1}{2}a + \frac{1}{2}a < \frac{1}{2}b + \frac{1}{2}a \text{ and } \frac{1}{2}a + \frac{1}{2}b < \frac{1}{2}b + \frac{1}{2}b$$

Using (D) algebraic properties of \mathbb{R} , and $(1/2) + (1/2) = 1 \cdot (1/2) + 1 \cdot (1/2) = 2 \cdot (1/2) = 1$, we have

$$a < \frac{1}{2}(a+b)$$
 and $\frac{1}{2}(a+b) < b$

This is exactly what we want.

Exercise 22

We will show these results by Mathematical Induction.

a) Clearly, for n = 1, we have $c^1 \ge c$, and for n = 2, from c > 1, we have $c \cdot c > 1 \cdot c$, which is $c^2 > c$. Now assume for some $n = k \in \mathbb{N}$ with k > 1, we have $c^k > c$, then multiply both side by c, we get $c^{k+1} > c^2 > c$, hence the inequality holds for n = k + 1. By Mathemacial Induction, we know $c^n > c$ holds for all $n\mathbb{N}$ with n > 1. Clearly we have $c^n \ge c$.

holds for all $n\mathbb{N}$ with n > 1. Clearly we have $c^n \ge c$. b) Just as above, for n = 1, the statement $c^1 \le c$ is clear. And for n = 2, $c < 1 \implies c^2 < c$. Still assume for n = k, $c^k \le c$ holds for some k > 1, then we will have

$$c^{k+1} < c^2 < c$$

hence the statement $c^n < c$ and $c^n \leq n$ holds for all n > 1 with $n \in \mathbb{N}$.