THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2070A Algebraic Structures 2019-20 Tutorial 4 Date: 30th September 2019

Problems:

1. Let V be the subgroup $\{Id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)\}$ of S_4 . Find all the left cosets of V in S_4 and all the right cosets of V in S_4 .

Solution. We can list all the elements of S_4 according the cycle pattern. S_4 has 5 cycle patterns: (*i*) trivial element; (*ii*) cycles of length 2; (*iii*) products of two disjoint cycles of length 2; (*iv*) cycles of length 3; (*v*) cycles of length 4. A complete list of elements in S_4 (in cycle notation) is

Cycle length	Elements in S_4
(i)	Id
(ii)	$\begin{pmatrix} 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 4 \end{pmatrix}, \begin{pmatrix} 2 & 3 \end{pmatrix}, \begin{pmatrix} 2 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 4 \end{pmatrix}$
(iii)	$\begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 4 \end{pmatrix}, \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix}$
(iv)	$egin{array}{cccccccccccccccccccccccccccccccccccc$
	$egin{pmatrix} 1 & 3 & 4 \end{pmatrix}, egin{pmatrix} 1 & 4 & 3 \end{pmatrix}, egin{pmatrix} 2 & 3 & 4 \end{pmatrix}, egin{pmatrix} 2 & 4 & 3 \end{pmatrix}$
(v)	$egin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}, egin{pmatrix} 1 & 3 & 4 & 2 \end{pmatrix}, egin{pmatrix} 1 & 4 & 2 & 3 \end{pmatrix},$
	$egin{pmatrix} 1 & 2 & 4 & 3 \end{pmatrix}, egin{pmatrix} 1 & 4 & 3 & 2 \end{pmatrix}, egin{pmatrix} 1 & 3 & 2 & 4 \end{pmatrix}$

We apply a brute-force approach. We may obtain the following 6(=4!/4) left cosets:

 $V = \{Id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$ $(1, 2)V = \{(1, 2), (3, 4), (1, 3, 2, 4), (1, 4, 2, 3)\}$ $(1, 3)V = \{(1, 3), (1, 2, 3, 4), (2, 4), (1, 4, 3, 2)\}$ $(1, 4)V = \{(1, 4), (1, 2, 4, 3), (1, 3, 4, 2), (2, 3)\}$ $(1, 2, 3)V = \{(1, 2, 3), (1, 3, 4), (2, 4, 3), (1, 4, 2)\}$ $(1, 3, 2)V = \{(1, 3, 2), (2, 3, 4), (1, 2, 4), (1, 4, 3)\}.$

Next we compute (similarly) the right cosets:

$$V = \{Id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)\}$$

$$V(1, 2) = \{(1, 2), (3, 4), (1, 3, 2, 4), (1, 4, 2, 3)\}$$

$$V(1, 3) = \{(1, 3), (1, 2, 3, 4), (2, 4), (1, 4, 3, 2)\}$$

$$V(1, 4) = \{(1, 4), (1, 2, 4, 3), (1, 3, 4, 2), (2, 3)\}$$

$$V(1, 2, 3) = \{(1, 2, 3), (1, 3, 4), (2, 4, 3), (1, 4, 2)\}$$

$$V(1, 3, 2) = \{(1, 3, 2), (2, 3, 4), (1, 2, 4), (1, 4, 3)\}.$$

It is not simply a trial and errors, because we know two (left) cosets are either identical or disjoint. Thus as $(1,2) \notin V$, (1,2)V and V are not identical cosets; as $(1,3) \notin (1,2)V$ and $(1,3) \notin V$, (1,3)V must be different from V and from (1,2)V; Also you can see that the cosets do partition the whole group.

2. Under what condition a left coset is also a subgroup?

Solution. Let G be a group and H < G. Let $g \in G$. The left coset gH is a subgroup if and only if $g \in H$.

Necessity: We first show that gH = H. It is clear that $gH \subset H$ as $g \in H$. On the other hand,

$$\forall h \in H, h = g(g^{-1})h \in gH.$$

Sufficiency: As gH is a subgroup, it must contain the identity, so gh = e for some $h \in H$. It follows that $g = h^{-1} \in H$.

Remark; The right coset Hg is a subgroup if and only if $g \in H$.

3. Suppose that [G:H] = 2. If a and b are not in H, show that $ab \in H$.

Solution. Let a, b be two elements in G but both not in H. In particular $b^{-1} \notin H$. Consider the partition $\{H, Hb^{-1}\}$. $a \notin H$, so $a \in Hb^{-1}$. Then we can write $a = hb^{-1}$ for some $h \in H$, hence $ab = h \in H$.

4. Find all the subgroups of S_3 .

Solution. By Lagrange's Theorem, the order of subgroup should be 1, 2, 3 or 6. First of all, subgroups of order 1 or 6 are $\{Id\}$ and S_3 respectively. For the subgroup of order 2 or 3, it found that it is cyclic by using the corollary of theorem of Lagrange as it is of prime order. We list those subgroups of order 2 or 3 below: $\langle (1 \ 2) \rangle$, $\langle (1 \ 3) \rangle$, $\langle (2 \ 3) \rangle$, and $\langle (1 \ 2 \ 3) \rangle$. To conclude, all the subgroups of S_3 are $\{Id\}$, $\langle (1 \ 2) \rangle$, $\langle (1 \ 3) \rangle$, $\langle (1 \ 3) \rangle$, $\langle (2 \ 3) \rangle$, $\langle (2 \ 3) \rangle$, $\langle (1 \ 2 \ 3) \rangle$, and S_3 .

5. Prove that the multiplicative group $\mathbb{Q}^* = (\mathbb{Q} \setminus \{0\}, \times)$ of nonzero rational numbers is not finitely generated.

Solution. • We prove by contradiction. Suppose \mathbb{Q}^* is finitely generated.

- Let x_1, x_2, \ldots, x_n be a set of generators of \mathbb{Q}^* .
- For each i = 1, 2, ..., n, write $x_i = \frac{a_i}{b_i}$ where a_i, b_i are nonzero integers.
- Let p be a prime number not dividing $a_1a_2 \cdots a_nb_1b_2 \cdots b_n$.
- Consider $p \in \mathbb{Q}^*$.
- More explicitly, there are integers k_1, k_2, \ldots, k_n such that

$$p = \left(\frac{a_1}{b_1}\right)^{k_1} \cdot \left(\frac{a_2}{b_2}\right)^{k_2} \cdots \left(\frac{a_n}{b_n}\right)^{k_n}.$$

• Write

$$\left(\frac{a_1}{b_1}\right)^{k_1} \cdot \left(\frac{a_2}{b_2}\right)^{k_2} \cdots \left(\frac{a_n}{b_n}\right)^{k_n} = \frac{M}{N}.$$

Here M and N are two nonzero integers. They are made of the positive integral powers of a_i and b_i .

- We have pN = M.
- Note that p|M while from the contribution of $p, p \nmid M$, hence a contradiction.
- We conclude that \mathbb{Q}^* is not finitely generated.

Optional Part

1. Show that S_n is generated by $\{(1, 2), (1, 2, 3, ..., n)\}$.

Solution. Note that

$$(1 \quad 2 \quad 3 \quad \cdots \quad n)^r (1 \quad 2) (1 \quad 2 \quad 3 \quad \cdots \quad n)^{n-r} = \begin{cases} (1 \quad 2) & \text{for } r = 0, \\ (r+1 \quad r+2) & \text{for } r = 1, 2, \dots, n-2, \\ (n \quad 1) & \text{for } r = n-1. \end{cases}$$

For r = 0 or n - 1, it is trivial. For r = i with $1 \le i \le n - 2$, $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \end{pmatrix}^{n-i}$ maps i + 1 to 1, which is then mapped into 2 by $\begin{pmatrix} 1 & 2 \end{pmatrix}$, which is mapped into i + 2 by $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \end{pmatrix}^i$. By a similar manner, i + 2 maps to i + 1. For the others, it is unchanged.

Let $\begin{pmatrix} i & j \end{pmatrix}$ be any transposition, written with i < j. We observe that

$$(i \ j) = (i \ i+1) \cdots (j-2 \ j-1) (j-1 \ j) (j-2 \ j-1) \cdots (i \ i+1).$$

Every permutation in S_n can be written as a product of transpositions, which we now see can each be written as a product of the special transpositions $\begin{pmatrix} 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 2 & 3 \end{pmatrix}$, ..., $\begin{pmatrix} n & 1 \end{pmatrix}$. And we have already shown that these in turn can be expressed as products of $\begin{pmatrix} 1 & 2 & 3 & \cdots & n \end{pmatrix}$ and $\begin{pmatrix} 1 & 2 \end{pmatrix}$. The proof follows plainly.