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Problems:

1. Let V be the subgroup {Id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} of S4. Find all the left
cosets of V in S4 and all the right cosets of V in S4.

Solution. We can list all the elements of S4 according the cycle pattern. S4 has 5 cycle
patterns: (i) trivial element; (ii) cycles of length 2; (iii) products of two disjoint cycles
of length 2; (iv) cycles of length 3; (v) cycles of length 4. A complete list of elements in
S4 (in cycle notation) is

Cycle length Elements in S4

(i) Id

(ii)
(
1 2

)
,
(
1 3

)
,
(
1 4

)
,
(
2 3

)
,
(
2 4

)
,
(
3 4

)
(iii)

(
1 2

) (
3 4

)
,
(
1 3

) (
2 4

)
,
(
1 4

) (
2 3

)
(iv)

(
1 2 3

)
,
(
1 3 2

)
,
(
1 2 4

)
,
(
1 4 2

)
,(

1 3 4
)
,
(
1 4 3

)
,
(
2 3 4

)
,
(
2 4 3

)
(v)

(
1 2 3 4

)
,
(
1 3 4 2

)
,
(
1 4 2 3

)
,(

1 2 4 3
)
,
(
1 4 3 2

)
,
(
1 3 2 4

)
We apply a brute-force approach. We may obtain the following 6(= 4!/4) left cosets:

V = {Id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
(1, 2)V = {(1, 2), (3, 4), (1, 3, 2, 4), (1, 4, 2, 3)}
(1, 3)V = {(1, 3), (1, 2, 3, 4), (2, 4), (1, 4, 3, 2)}
(1, 4)V = {(1, 4), (1, 2, 4, 3), (1, 3, 4, 2), (2, 3)}

(1, 2, 3)V = {(1, 2, 3), (1, 3, 4), (2, 4, 3), (1, 4, 2)}
(1, 3, 2)V = {(1, 3, 2), (2, 3, 4), (1, 2, 4), (1, 4, 3)}.

Next we compute (similarly) the right cosets:

V = {Id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
V (1, 2) = {(1, 2), (3, 4), (1, 3, 2, 4), (1, 4, 2, 3)}
V (1, 3) = {(1, 3), (1, 2, 3, 4), (2, 4), (1, 4, 3, 2)}
V (1, 4) = {(1, 4), (1, 2, 4, 3), (1, 3, 4, 2), (2, 3)}

V (1, 2, 3) = {(1, 2, 3), (1, 3, 4), (2, 4, 3), (1, 4, 2)}
V (1, 3, 2) = {(1, 3, 2), (2, 3, 4), (1, 2, 4), (1, 4, 3)}.
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It is not simply a trial and errors, because we know two (left) cosets are either identical or
disjoint. Thus as (1, 2) 6∈ V , (1, 2)V and V are not identical cosets; as (1, 3) 6∈ (1, 2)V
and (1, 3) 6∈ V , (1, 3)V must be different from V and from (1, 2)V ; .... Also you can see
that the cosets do partition the whole group. J

2. Under what condition a left coset is also a subgroup?

Solution. Let G be a group and H < G. Let g ∈ G. The left coset gH is a subgroup if
and only if g ∈ H .

Necessity: We first show that gH = H . It is clear that gH ⊂ H as g ∈ H . On the other
hand,

∀h ∈ H, h = g(g−1)h ∈ gH.

Sufficiency: As gH is a subgroup, it must contain the identity, so gh = e for some h ∈ H .
It follows that g = h−1 ∈ H .

Remark; The right coset Hg is a subgroup if and only if g ∈ H . J

3. Suppose that [G : H] = 2. If a and b are not in H , show that ab ∈ H .

Solution. Let a, b be two elements in G but both not in H . In particular b−1 6∈ H .
Consider the partition {H,Hb−1}. a 6∈ H , so a ∈ Hb−1. Then we can write a = hb−1

for some h ∈ H , hence ab = h ∈ H .

J

4. Find all the subgroups of S3.

Solution. By Lagrange’s Theorem, the order of subgroup should be 1, 2, 3 or 6. First
of all, subgroups of order 1 or 6 are {Id} and S3 respectively. For the subgroup of order
2 or 3, it found that it is cyclic by using the corollary of theorem of Lagrange as it is of
prime order. We list those subgroups of order 2 or 3 below: 〈

(
1 2

)
〉, 〈
(
1 3

)
〉, 〈
(
2 3

)
〉,

and 〈
(
1 2 3

)
〉. To conclude, all the subgroups of S3 are {Id}, 〈

(
1 2

)
〉, 〈
(
1 3

)
〉,

〈
(
2 3

)
〉,〈
(
1 2 3

)
〉 and S3.

J

5. Prove that the multiplicative group Q∗ = (Q \ {0},×) of nonzero rational numbers is not
finitely generated.
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Solution. • We prove by contradiction. Suppose Q∗ is finitely generated.
• Let x1, x2, . . . , xn be a set of generators of Q∗.
• For each i = 1, 2, . . . , n, write xi =

ai
bi

where ai, bi are nonzero integers.
• Let p be a prime number not dividing a1a2 · · · anb1b2 · · · bn.
• Consider p ∈ Q∗.
• More explicitly, there are integers k1, k2, . . . , kn such that

p =

(
a1
b1

)k1

·
(
a2
b2

)k2

· · ·
(
an
bn

)kn

.

• Write (
a1
b1

)k1

·
(
a2
b2

)k2

· · ·
(
an
bn

)kn

=
M

N
.

Here M and N are two nonzero integers. They are made of the positive integral
powers of ai and bi.
• We have pN = M .
• Note that p|M while from the contribution of p, p - M , hence a contradiction.
• We conclude that Q∗ is not finitely generated.

J

Optional Part

1. Show that Sn is generated by {(1, 2), (1, 2, 3, . . . , n)}.

Solution. Note that

(
1 2 3 · · · n

)r (
1 2

) (
1 2 3 · · · n

)n−r
=


(
1 2

)
for r = 0,(

r + 1 r + 2
)

for r = 1, 2, . . . , n− 2,(
n 1

)
for r = n− 1.

For r = 0 or n − 1, it is trivial. For r = i with 1 ≤ i ≤ n − 2,
(
1 2 3 · · · n

)n−i

maps i + 1 to 1, which is then mapped into 2 by
(
1 2

)
, which is mapped into i + 2

by
(
1 2 3 · · · n

)i. By a similar manner, i + 2 maps to i + 1. For the others, it is
unchanged.

Let
(
i j

)
be any transposition, written with i < j. We observe that(

i j
)
=
(
i i+ 1

)
· · ·
(
j − 2 j − 1

) (
j − 1 j

) (
j − 2 j − 1

)
· · ·
(
i i+ 1

)
.

Every permutation in Sn can be written as a product of transpositions, which we now
see can each be written as a product of the special transpositions

(
1 2

)
,
(
2 3

)
, . . .,(

n 1
)
. And we have already shown that these in turn can be expressed as products of(

1 2 3 · · · n
)

and
(
1 2

)
. The proof follows plainly.

J


