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1. Let V be the subgroup {Id, (1,2)(3,4),(1,3)(2,4), (1,4)(2,3)} of S,;. Find all the left
cosets of /' in S, and all the right cosets of V' in .S,.

Solution. We can list all the elements of S, according the cycle pattern. S, has 5 cycle
patterns: (7) trivial element; (i7) cycles of length 2; (iii) products of two disjoint cycles
of length 2; (iv) cycles of length 3; (v) cycles of length 4. A complete list of elements in

S, (in cycle notation) is

Cycle length Elements in Sy
(1) Id
(71) (1 2),(1 3),(1 4),(2 3),(2 4),(3 4)
(i1i) (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)
(w) (1 23,1 32,1 24,1 4 2),
(1 3 4),(1 43),(2 3 4),(2 4 3)
(v) (1 23 4),(1342)),( 42 3),
(1 243,01 432,003 24
We apply a brute-force approach. We may obtain the following 6(= 4!/4) left cosets:
Vo= {Id,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}
(L,2)V = {(1,2),(3,4),(1,3,2,4),(1,4,2,3)}
(1,3)V = {(1,3),(1,2,3,4),(2,4),(1,4,3,2)}
(L,4)V = {(1,4),(1,2,4,3),(1,3,4,2),(2,3)}
(1,2,3)V = {(1,2,3),(1,3 4),(2 4,3),(1,4,2)}
(1,3,2)V = {(1,3,2),(2,3,4),(1,2,4),(1,4,3)}.
Next we compute (similarly) the right cosets:
Vo= {Id,(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)}
V(1,2) = {(1,2),(3,4),(1,3,2,4),(1,4,2,3)}
V(1,3) = {(1,3),(1,2,3,4),(2,4),(1,4,3,2)}
V(1,4) = {(1, ),(1,2,4,3),(1 3,4,2),(2,3)}
V(1,2,3) = {(1,2,3),(1,3, 4)7(2 4,3),(1,4,2)}
V(1,3,2) = {(1,3,2),(2,3,4),(1,2,4),(1,4,3)}.



It is not simply a trial and errors, because we know two (left) cosets are either identical or
disjoint. Thus as (1,2) ¢ V, (1,2)V and V are not identical cosets; as (1,3) & (1,2)V
and (1,3) ¢ V', (1,3)V must be different from V" and from (1,2)V/; .... Also you can see
that the cosets do partition the whole group. <

. Under what condition a left coset is also a subgroup?

Solution. Let GG be a group and H < G. Let g € (. The left coset gH is a subgroup if
andonly if g € H.

Necessity: We first show that gH = H. Itis clear that gH C H as g € H. On the other
hand,
VYhe H h=g(g')hcgH.

Sufficiency: As gH is a subgroup, it must contain the identity, so gh = e for some h € H.
It follows that g = h™! € H.
Remark; The right coset H g is a subgroup if and only if g € H. <

. Suppose that [G : H] = 2. If a and b are not in H, show that ab € H.

Solution. Let a,b be two elements in G but both not in H. In particular b~! ¢ H.
Consider the partition {H, Hb='}. a ¢ H, so a € Hb~'. Then we can write ¢ = hb™*
forsome h € H,henceab=h € H.

<

. Find all the subgroups of Sj.

Solution. By Lagrange’s Theorem, the order of subgroup should be 1, 2, 3 or 6. First
of all, subgroups of order 1 or 6 are {/d} and S5 respectively. For the subgroup of order
2 or 3, it found that it is cyclic by using the corollary of theorem of Lagrange as it is of
prime order. We list those subgroups of order 2 or 3 below: ((1 2)), ((1 3)),((2 3)),
and ((1 2 3)). To conclude, all the subgroups of S5 are {Id}, ((1 2)), ((1 3)),
(2 3)),((1 2 3))and Ss.

<

. Prove that the multiplicative group Q* = (Q\ {0}, x) of nonzero rational numbers is not
finitely generated.



Solution. e We prove by contradiction. Suppose Q* is finitely generated.
o Letxy,xo,...,x, be asetof generators of Q*.
e Foreachi=1,2,... n,write x; = Z— where a;, b; are nonzero integers.
e Let p be a prime number not dividing a;as - - - a,b1bs - - - by,.
e Consider p € Q*.
e More explicitly, there are integers k1, ko, . . . , k,, such that

ki ks kn
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P (ln) (bQ) (b) |
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by by b, N

Here M and N are two nonzero integers. They are made of the positive integral
powers of a; and b;.

e We have pN = M.
e Note that p| M while from the contribution of p, p ¥ M, hence a contradiction.

e Write

e We conclude that Q* is not finitely generated.

<
Optional Part
1. Show that S,, is generated by {(1,2),(1,2,3,...,n)}.

Solution. Note that

1 2) forr =0,
(1238 w) (120 23 0" ={(rs1 re2) forr=12...n-2

n 1) forr =n—1.
Forr = 0orn — 1,itis trivial. Forr = s with 1 <7 < n — 2, (1 2 3 .- n)n_i
maps ¢ + 1 to 1, which is then mapped into 2 by (1 2), which is mapped into 7 + 2
by (1 2 3 -+ n)'. By a similar manner, i + 2 maps to i + 1. For the others, it is
unchanged.

Let (¢ j) be any transposition, written with i < j. We observe that
G )= 12 =1 (=1 ) (=2 G=1)e (i i+ 1).

Every permutation in S,, can be written as a product of transpositions, which we now
see can each be written as a product of the special transpositions (1 2), (2 3), e
(n 1) . And we have already shown that these in turn can be expressed as products of
(1 2 3 .- n) and (1 2). The proof follows plainly.

<



