Math 3030 Algebra I Review of basic ring theory

1 Rings

Definition 1.1. A ring $(R, +, \cdot)$ is a nonempty set R together with two binary opera*tions: addition* and *multiplication* +, \cdot : $R \times R \rightarrow R$ *such that*

- *(1)* $(R, +)$ *is an abelian group*;
- *(2)* · *is associative; and*
- (3) · *is distributive over* +*, i.e.*

 $a(b + c) = ab + ac$ *and* $(a + b)c = ac + bc$

for any $a, b, c \in R$.

Definition 1.2. *Let* $(R, +, \cdot)$ *be a ring.*

- We say R is *commutative* if $ab = ba$ for any $a, b \in R$.
- *We say* R *is a ring with unity if there exists a multiplicative identity in* R*, i.e. an element* $1 \in R$ *such that* $a1 = 1a = a$ *for any* $a \in R$ *.*

Here are some examples of rings:

- (1) $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ (equipped with the usual addition and multiplication) are all commutative rings with unity.
- (2) Let R be any commutative ring with unity. Then the set of polynomials $R[x]$ with coefficients in R is also a commutative ring with unity. Examples are $\mathbb{Z}[x]$, $\mathbb{Q}[x], \mathbb{R}[x], \mathbb{C}[x]$.
- (3) For an integer $n \geq 2$, $n\mathbb{Z}$ is a commutative ring without unity.
- (4) The only ring in which $1 = 0$ is $R = \{0\}$, called the zero ring.
- (5) For any nonzero integer n, \mathbb{Z}_n is a finite commutative ring with unity.
- (6) Let R be any commutative ring with unity. Then for any integer $n \geq 2$, the set $M_{n\times n}(R)$ of $n\times n$ matrices with entries in R is a noncommutative ring with unity.

2 Special classes of rings

Definition 2.1. Let R be a ring. If $a, b \in R$ are two nonzero elements of R such that ab = 0*, then we call them 0-divisors. (More precisely,* a *is called a left 0-divisor while* b *is called a right 0-divisor.)*

Definition 2.2. An *integral domain is a commutative ring with unity* $1 \neq 0$ *containing no 0-divisors.*

Proposition 2.3. *Let* R *be a commutative ring with unity. Then* R *is an integral domain if and only if the cancellation law hold for multiplication, i.e. whenever* $ca = cb$ *and* $c \neq 0$ *, we have* $a = b$ *.*

Examples:

- (1) The finite ring \mathbb{Z}_n is an integral domain if and only if n is a prime.
- (2) If D is an integral domain, then the polynomial ring $D[x]$ is also an integral domain.

Definition 2.4. Let R be a ring with unity $1 \neq 0$. A nonzero element $u \in R$ is called *a* **unit** if it has a multiplicative inverse in R, i.e. there exists $u^{-1} \in R$ such that $uu^{-1} = u^{-1}u = 1.$

Definition 2.5. A field is a commutative ring with unity $1 \neq 0$ in which every nonzero *element is a unit.*

It is not hard to see that any field is an integral domain. Conversely, we have the following

Proposition 2.6. *Any finite integral domain is a field.*

Examples:

- (1) $\mathbb{O}, \mathbb{R}, \mathbb{C}$ are fields.
- (2) By the above proposition, \mathbb{Z}_p is a finite field for any prime p.
- (3) Q[$\sqrt{ }$ $2] := \{a + b$ $\sqrt{2} \mid a, b \in \mathbb{Q}$ } is a field.

Definition 2.7. *Let* D *be an integral domain. If there exists a positive integer* n *such that* $na = 0$ *for any* $a \in D$ *, then D is said to be of finite characteristic, and the smallest such positive integer is called the characteristic of* D*, denoted by char*(D)*. If no such integer exists, then we say* D *is of characteristic 0, written as char(D) = 0.*

Proposition 2.8. *If* $n1 \neq 0$ *for any positive integer n, then D is of characteristic 0. Otherwise, char*(*D*) = $\min\{n \in \mathbb{Z}_{>0} \mid n1 = 0\}$ *.*

Proposition 2.9. *The characteristic of an integral domain is either 0 or a prime* p*.*

Examples:

(1) $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are of characteristic 0.

(2) \mathbb{Z}_p is of characteristic p.

Given an integral domain D , the field of quotients (or fraction field) of D , denoted by Frac(D), is the quotient of the product $D \times (D \setminus \{0\})$ by the equivalence relation:

 $(a, b) \sim (c, d)$ if and only if $ad = bc$.

Proposition 2.10. *Frac(D) is a field under the addition and multiplication inherited from* D*, with additive identity* [(0, 1)]*, multiplicative identity* [(1, 1)]*, and the inverse of a* nonzero element $[(a, b)]$ given by $[(b, a)]$.

Furthermore, there is a natural embedding $j : D \hookrightarrow Frac(D)$ *by* $a \mapsto [(a, 1)]$ *, which is* universal *among all embeddings from* D *to a field, i.e. for any embedding* $\iota : D \hookrightarrow L$ *from* D *into a field* L, there exists an embedding $i : Frac(D) \hookrightarrow L$ such *that* $\iota = i \circ j$ *.*

Examples:

- (1) Frac $(\mathbb{Z}) = \mathbb{Q}$.
- (2) Let F be a field. Then $Frac(F[x])$ is called the field of rational functions over F, denoted by $F(x)$. Formally, we can write

$$
F(x) = \left\{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in F[x], g(x) \neq 0 \right\}.
$$

3 Ring homomorphisms; subrings and ideals

Definition 3.1. Let R and R' be rings. A map $\phi : R \to R'$ called a **ring homomor***phism (or simply homomorphism) if*

(1) $\phi(a+b) = \phi(a) + \phi(b)$ *, and*

$$
(2) \phi(ab) = \phi(a)\phi(b)
$$

for any $a, b \in R$ *. If* ϕ *is furthermore bijective, then it is called an <i>isomorphism.* We *say that* R *is isomorphic to* R' *, denoted by* $R \cong R'$ *, if there exists an isomorphism* ϕ *from* R *to* R' *.*

Remark 3.2. If ϕ is an isomorphism, then ϕ^{-1} is automatically an isomorphism.

Examples of ring homomorphisms:

- (1) For any positive integer n, the map $\phi : \mathbb{Z} \to \mathbb{Z}_n$ defined by mapping k to its reminder when divided by n is a surjective ring homomorphism.
- (2) Let R be the set of all functions from $\mathbb R$ to $\mathbb R$. Fix $a \in \mathbb R$. Then the **evaluation map** $\phi_a : R \to \mathbb{R}$ defined by $f \mapsto f(a)$ is a ring homomorphism.
- (3) $\mathbb Z$ and $2\mathbb Z$ are isomorphic as abelian groups but *not* as rings.

Proposition 3.3. A subring of a ring $(R, +, \cdot)$ is a nonempty subset $S \subset R$ closed $under + and \cdot which forms a ring under the inherited operations.$

Proposition 3.4. *Let* ϕ : $R \rightarrow R'$ *be a ring homomorphism. Then*

- (1) $\phi(0) = 0'$, where 0 and 0' are the additive identities in R and R' respectively.
- *(2) For any* $a \in R$, $\phi(-a) = -\phi(a)$.
- *(3) For any subring* $S \subset R$, $\phi(S)$ *is a subring of* R' *.*
- (4) For any subring $S' \subset R'$, $\phi^{-1}(S')$ is a subring of R.
- *(5) If* R has a multiplicative identity 1_R , then $\phi(1_R)$ is a multiplicative identity of $\phi(R)$.

Remark 3.5. *If* ϕ *is nonzero and* R' *has no 0-divisors, then* $\phi(1_R)$ *is a multiplicative identity of* R' .

Definition 3.6. *Let* $\phi : R \to R'$ *be a ring homomorphism. The subring*

$$
\ker \phi := \phi^{-1}(0') = \{ a \in R \mid \phi(a) = 0' \}
$$

is called the kernel of ϕ *.*

Proposition 3.7. A ring homomorphism ϕ : $R \to R'$ is injective if and only if ker ϕ = {0}*.*

Definition 3.8. An additive subgroup I of a ring R such that aI ⊂ I and Ib ⊂ I for *any* $a, b \in R$ *is called an ideal of* R *.*

Remark 3.9. *An ideal is in particular a subring.*

Proposition 3.10. *For any homomorphism* $\phi : R \to R'$, ker ϕ *is an ideal of* R.

Theorem 3.11. *Let* $I ⊂ R$ *be an additive subgroup. Then the multiplication*

$$
(a+I)(b+I) = (ab) + I
$$

on additive cosets is well-defined if and only if I *is an ideal.*

Corollary 3.12. *Let* $I ⊂ R$ *be an ideal. Then the additive cosets of* I *in* R *form a ring, called the quotient ring of* R *by* I *and denoted by* R/I*, under the operations*

$$
(a+I) + (b+I) = (a+b) + I,
$$

$$
(a+I)(b+I) = (ab) + I.
$$

Proposition 3.13. *Let* $I \subset R$ *be an ideal. Then the map* $\pi : R \to R/I$ *defined by* $\pi(a) = a + I$ *is a surjective ring homomorphism with* ker $\pi = I$ *; this map is called the projection map or canonical map.*

Hence "ideal" and "kernel of a ring homomorphism" are *equivalent* concepts.

Theorem 3.14. *(First Isomorphism Theorem)* Let $\varphi : R \to R'$ be a ring homomor*phism. Let* $I = \ker \varphi$ *. Then the map* $\overline{\varphi}$: $R/I \to \varphi(R)$ *defined by*

$$
\overline{\varphi}(a+I) = \varphi(a)
$$

is an isomorphism such that $\varphi = \overline{\varphi} \circ \pi$ *.*

Here are some examples:

- (1) $n\mathbb{Z} \subset \mathbb{Z}$ is an ideal, and $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$ as rings.
- (2) Let R be the set of all functions from R to R. Fix $a \in \mathbb{R}$. Then $I_a := \{f \in R \mid$ $f(a) = 0$ is an ideal of R since it is the kernel of the evaluation map ϕ_a , and $R/I_a \cong \mathbb{R}$ as rings. On the other hand, the subset S consisting of all constant functions is a subring but *not* an ideal.
- (3) For any ring R, we have both $\{0\}$ and R are ideals of R. An ideal $I \subsetneq R$ is called **proper** and ideal $\{0\} \subsetneq I \subset R$ is called **nontrivial**.
- (4) Let R be a commutative ring. Let $a \in R$. Then the set of all multiples of a

$$
\langle a \rangle := \{ ra \mid r \in R \}
$$

is an ideal, called the **principal ideal generated by** a . If R has a multiplicative identity 1, then $R = \langle 1 \rangle$.

(5) More generally, let $A \subset R$ be a nonempty subset of a commutative ring R. Then the set of all finite linear combinations of elements of A

 $\langle A \rangle := \{r_1a_1 + \cdots + r_ka_k \mid k \in \mathbb{Z}_{>0}, r_i \in R, a_i \in A\}$

is an ideal, called the **ideal generated by** A .

Proposition 3.15. *Let* F *be a field.*

- *(i)* If char(F) = 0, then there exists an embedding $\mathbb{Q} \hookrightarrow F$.
- *(ii) If char*(*F*) = *p, then there exists an embedding* $\mathbb{Z}_p \hookrightarrow F$ *.*

Because of this, the fields \mathbb{Q}, \mathbb{Z}_p *(where p is a prime) are called prime fields.*

4 Polynomial rings

Definition 4.1. Let R be a commutative ring with unity $1 \neq 0$. A **polynomial** $f(x)$ *with coefficients in* R *is a formal sum*

$$
f(x) = \sum_{i=0}^{\infty} a_i x^i
$$

where $a_i \in R$ *and* $a_i = 0$ *for all but finitely many i*'s. If $a_i \neq 0$ *for some i*, *then the largest such integer is called the degree of* $f(x)$ *<i>. We denote by* $R[x]$ *the set of all polynomials with coefficients in* R*.*

Proposition 4.2. R[x] *is a commutative ring with unity under the usual addition and multiplication of polynomials.*

Proposition 4.3 (Division algorithm). Let F be a field. Let $f(x)$, $g(x) \in F[x]$ be two *nonzero polynomials. Then there exist unique* $q(x)$, $r(x) \in F[x]$ *such that*

$$
f(x) = q(x)g(x) + r(x),
$$

and either $r(x) = 0$ *or* deg $r(x) < \deg g(x)$ *.*

Corollary 4.4. An element $a \in F$ is a **root** (or **zero**) of $f(x)$ (i.e. $f(a) = 0$) if and *only if* $f(x)$ *is divisible by* $x - a$ *.*

Corollary 4.5. A nonzero polynomial $f(x) \in F[x]$ of positive degree n can have at *most* n *roots in* F*.*

Definition 4.6. *An integral domain* D *is called a principal ideal domain (PID) if every ideal in* D *is principal.*

An example of PID is given by \mathbb{Z} .

Proposition 4.7. *For any field* F*,* F[x] *is a PID.*

Definition 4.8. *A nonconstant polynomial* $f(x) \in F[x]$ *is said to be irreducible over* F *if it cannot be written as a product* $g(x)h(x)$ *where both* $g(x)$ *and* $h(x)$ *have degrees lower than that of* $f(x)$ *. Otherwise,* $f(x)$ *is said to be reducible.*

Examples:

- (1) $x^2 + 1$ is irreducible over R but reducible over C.
- (2) $f(x) = x^3 + 3x + 2 \in \mathbb{Z}_5[x]$ is irreducible over \mathbb{Z}_5 since it has no roots in \mathbb{Z}_5 (which is easy to check).

Lemma 4.9 (Gauss' lemma). *If* $f(x) \in \mathbb{Z}[x]$ *can be factored as a product of two polynomials in* $\mathbb{Q}[x]$ *, it can also be factored as a product of two polynomials in* $\mathbb{Z}[x]$ *.*

Theorem 4.10 (Eisenstein criterion). Let $p \in \mathbb{Z}$ be a prime. Let $f(x) = a_n x^n + \cdots$ $a_1x + a_0 \in \mathbb{Z}[x]$ *. Suppose that* $p \nmid a_n$, $p \mid a_i$ for all $i < n$ and $p^2 \nmid a_0$ *. Then* $f(x)$ *is irreducible over* Q*.*

Examples:

- (1) $5x^5 9x^4 3x^2 12$ is irreducible over Q.
- (2) For any prime p , the p -th cyclotomic polynomial

$$
\Phi_p(x) := \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1
$$

is irreducible over Q.

Theorem 4.11. Let F be a field. For any polynomial $f(x) \in F[x]$, the following *statements are equivalent:*

- *(1)* $F[x]/\langle f(x) \rangle$ *is a field.*
- *(2)* $F[x]/\langle f(x) \rangle$ *is an integral domain.*
- (3) $f(x)$ *is irreducible over* F.