
Math 3030 Algebra I
Review of basic ring theory

1 Rings
Definition 1.1. A ring (R,+, ·) is a nonempty set R together with two binary opera-
tions: addition and multiplication +, · : R×R→ R such that

(1) (R,+) is an abelian group;

(2) · is associative; and

(3) · is distributive over +, i.e.

a(b+ c) = ab+ ac and (a+ b)c = ac+ bc

for any a, b, c ∈ R.

Definition 1.2. Let (R,+, ·) be a ring.

• We say R is commutative if ab = ba for any a, b ∈ R.

• We say R is a ring with unity if there exists a multiplicative identity in R, i.e. an
element 1 ∈ R such that a1 = 1a = a for any a ∈ R.

Here are some examples of rings:

(1) Z, Q, R, C (equipped with the usual addition and multiplication) are all commu-
tative rings with unity.

(2) Let R be any commutative ring with unity. Then the set of polynomials R[x]
with coefficients in R is also a commutative ring with unity. Examples are Z[x],
Q[x], R[x], C[x].

(3) For an integer n ≥ 2, nZ is a commutative ring without unity.

(4) The only ring in which 1 = 0 is R = {0}, called the zero ring.

(5) For any nonzero integer n, Zn is a finite commutative ring with unity.

(6) Let R be any commutative ring with unity. Then for any integer n ≥ 2, the set
Mn×n(R) of n × n matrices with entries in R is a noncommutative ring with
unity.
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2 Special classes of rings
Definition 2.1. Let R be a ring. If a, b ∈ R are two nonzero elements of R such that
ab = 0, then we call them 0-divisors. (More precisely, a is called a left 0-divisor while
b is called a right 0-divisor.)

Definition 2.2. An integral domain is a commutative ring with unity 1 6= 0 containing
no 0-divisors.

Proposition 2.3. LetR be a commutative ring with unity. ThenR is an integral domain
if and only if the cancellation law hold for multiplication, i.e. whenever ca = cb and
c 6= 0, we have a = b.

Examples:

(1) The finite ring Zn is an integral domain if and only if n is a prime.

(2) If D is an integral domain, then the polynomial ring D[x] is also an integral
domain.

Definition 2.4. Let R be a ring with unity 1 6= 0. A nonzero element u ∈ R is called
a unit if it has a multiplicative inverse in R, i.e. there exists u−1 ∈ R such that
uu−1 = u−1u = 1.

Definition 2.5. A field is a commutative ring with unity 1 6= 0 in which every nonzero
element is a unit.

It is not hard to see that any field is an integral domain. Conversely, we have the
following

Proposition 2.6. Any finite integral domain is a field.

Examples:

(1) Q, R, C are fields.

(2) By the above proposition, Zp is a finite field for any prime p.

(3) Q[
√

2] := {a+ b
√

2 | a, b ∈ Q} is a field.

Definition 2.7. Let D be an integral domain. If there exists a positive integer n such
that na = 0 for any a ∈ D, then D is said to be of finite characteristic, and the
smallest such positive integer is called the characteristic of D, denoted by char(D). If
no such integer exists, then we say D is of characteristic 0, written as char(D) = 0.

Proposition 2.8. If n1 6= 0 for any positive integer n, then D is of characteristic 0.
Otherwise, char(D) = min{n ∈ Z>0 | n1 = 0}.

Proposition 2.9. The characteristic of an integral domain is either 0 or a prime p.

Examples:

(1) Z, Q, R, C are of characteristic 0.
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(2) Zp is of characteristic p.

Given an integral domainD, the field of quotients (or fraction field) ofD, denoted
by Frac(D), is the quotient of the product D × (D \ {0}) by the equivalence relation:

(a, b) ∼ (c, d) if and only if ad = bc.

Proposition 2.10. Frac(D) is a field under the addition and multiplication inherited
fromD, with additive identity [(0, 1)], multiplicative identity [(1, 1)], and the inverse of
a nonzero element [(a, b)] given by [(b, a)].

Furthermore, there is a natural embedding j : D ↪→ Frac(D) by a 7→ [(a, 1)],
which is universal among all embeddings from D to a field, i.e. for any embedding
ι : D ↪→ L from D into a field L, there exists an embedding i : Frac(D) ↪→ L such
that ι = i ◦ j.

Examples:

(1) Frac(Z) = Q.

(2) Let F be a field. Then Frac(F [x]) is called the field of rational functions over
F , denoted by F (x). Formally, we can write

F (x) =

{
f(x)

g(x)
| f(x), g(x) ∈ F [x], g(x) 6= 0

}
.

3 Ring homomorphisms; subrings and ideals
Definition 3.1. Let R and R′ be rings. A map φ : R → R′ called a ring homomor-
phism (or simply homomorphism) if

(1) φ(a+ b) = φ(a) + φ(b), and

(2) φ(ab) = φ(a)φ(b)

for any a, b ∈ R. If φ is furthermore bijective, then it is called an isomorphism. We
say that R is isomorphic to R′, denoted by R ∼= R′, if there exists an isomorphism φ
from R to R′.

Remark 3.2. If φ is an isomorphism, then φ−1 is automatically an isomorphism.

Examples of ring homomorphisms:

(1) For any positive integer n, the map φ : Z → Zn defined by mapping k to its
reminder when divided by n is a surjective ring homomorphism.

(2) Let R be the set of all functions from R to R. Fix a ∈ R. Then the evaluation
map φa : R→ R defined by f 7→ f(a) is a ring homomorphism.

(3) Z and 2Z are isomorphic as abelian groups but not as rings.
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Proposition 3.3. A subring of a ring (R,+, ·) is a nonempty subset S ⊂ R closed
under + and · which forms a ring under the inherited operations.

Proposition 3.4. Let φ : R→ R′ be a ring homomorphism. Then

(1) φ(0) = 0′, where 0 and 0′ are the additive identities in R and R′ respectively.

(2) For any a ∈ R, φ(−a) = −φ(a).

(3) For any subring S ⊂ R, φ(S) is a subring of R′.

(4) For any subring S′ ⊂ R′, φ−1(S′) is a subring of R.

(5) If R has a multiplicative identity 1R, then φ(1R) is a multiplicative identity of
φ(R).

Remark 3.5. If φ is nonzero and R′ has no 0-divisors, then φ(1R) is a multiplicative
identity of R′.

Definition 3.6. Let φ : R→ R′ be a ring homomorphism. The subring

kerφ := φ−1(0′) = {a ∈ R | φ(a) = 0′}

is called the kernel of φ.

Proposition 3.7. A ring homomorphism φ : R→ R′ is injective if and only if kerφ =
{0}.

Definition 3.8. An additive subgroup I of a ring R such that aI ⊂ I and Ib ⊂ I for
any a, b ∈ R is called an ideal of R.

Remark 3.9. An ideal is in particular a subring.

Proposition 3.10. For any homomorphism φ : R→ R′, kerφ is an ideal of R.

Theorem 3.11. Let I ⊂ R be an additive subgroup. Then the multiplication

(a+ I)(b+ I) = (ab) + I

on additive cosets is well-defined if and only if I is an ideal.

Corollary 3.12. Let I ⊂ R be an ideal. Then the additive cosets of I in R form a ring,
called the quotient ring of R by I and denoted by R/I , under the operations

(a+ I) + (b+ I) = (a+ b) + I,

(a+ I)(b+ I) = (ab) + I.

Proposition 3.13. Let I ⊂ R be an ideal. Then the map π : R → R/I defined by
π(a) = a + I is a surjective ring homomorphism with kerπ = I; this map is called
the projection map or canonical map.

Hence “ideal” and “kernel of a ring homomorphism” are equivalent concepts.
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Theorem 3.14. (First Isomorphism Theorem) Let ϕ : R → R′ be a ring homomor-
phism. Let I = kerϕ. Then the map ϕ : R/I → ϕ(R) defined by

ϕ(a+ I) = ϕ(a)

is an isomorphism such that ϕ = ϕ ◦ π.

Here are some examples:

(1) nZ ⊂ Z is an ideal, and Z/nZ ∼= Zn as rings.

(2) Let R be the set of all functions from R to R. Fix a ∈ R. Then Ia := {f ∈ R |
f(a) = 0} is an ideal of R since it is the kernel of the evaluation map φa, and
R/Ia ∼= R as rings. On the other hand, the subset S consisting of all constant
functions is a subring but not an ideal.

(3) For any ring R, we have both {0} and R are ideals of R. An ideal I $ R is
called proper and ideal {0} $ I ⊂ R is called nontrivial.

(4) Let R be a commutative ring. Let a ∈ R. Then the set of all multiples of a

〈a〉 := {ra | r ∈ R}

is an ideal, called the principal ideal generated by a. If R has a multiplicative
identity 1, then R = 〈1〉.

(5) More generally, let A ⊂ R be a nonempty subset of a commutative ring R. Then
the set of all finite linear combinations of elements of A

〈A〉 := {r1a1 + · · ·+ rkak | k ∈ Z>0, ri ∈ R, ai ∈ A}

is an ideal, called the ideal generated by A.

Proposition 3.15. Let F be a field.

(i) If char(F ) = 0, then there exists an embedding Q ↪→ F .

(ii) If char(F ) = p, then there exists an embedding Zp ↪→ F .

Because of this, the fields Q, Zp (where p is a prime) are called prime fields.

4 Polynomial rings
Definition 4.1. Let R be a commutative ring with unity 1 6= 0. A polynomial f(x)
with coefficients in R is a formal sum

f(x) =

∞∑
i=0

aix
i

where ai ∈ R and ai = 0 for all but finitely many i’s. If ai 6= 0 for some i, then
the largest such integer is called the degree of f(x). We denote by R[x] the set of all
polynomials with coefficients in R.
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Proposition 4.2. R[x] is a commutative ring with unity under the usual addition and
multiplication of polynomials.

Proposition 4.3 (Division algorithm). Let F be a field. Let f(x), g(x) ∈ F [x] be two
nonzero polynomials. Then there exist unique q(x), r(x) ∈ F [x] such that

f(x) = q(x)g(x) + r(x),

and either r(x) = 0 or deg r(x) < deg g(x).

Corollary 4.4. An element a ∈ F is a root (or zero) of f(x) (i.e. f(a) = 0) if and
only if f(x) is divisible by x− a.

Corollary 4.5. A nonzero polynomial f(x) ∈ F [x] of positive degree n can have at
most n roots in F .

Definition 4.6. An integral domainD is called a principal ideal domain (PID) if every
ideal in D is principal.

An example of PID is given by Z.

Proposition 4.7. For any field F , F [x] is a PID.

Definition 4.8. A nonconstant polynomial f(x) ∈ F [x] is said to be irreducible over
F if it cannot be written as a product g(x)h(x) where both g(x) and h(x) have degrees
lower than that of f(x). Otherwise, f(x) is said to be reducible.

Examples:

(1) x2 + 1 is irreducible over R but reducible over C.

(2) f(x) = x3 + 3x + 2 ∈ Z5[x] is irreducible over Z5 since it has no roots in Z5

(which is easy to check).

Lemma 4.9 (Gauss’ lemma). If f(x) ∈ Z[x] can be factored as a product of two
polynomials in Q[x], it can also be factored as a product of two polynomials in Z[x].

Theorem 4.10 (Eisenstein criterion). Let p ∈ Z be a prime. Let f(x) = anx
n + · · ·+

a1x + a0 ∈ Z[x]. Suppose that p - an, p | ai for all i < n and p2 - a0. Then f(x) is
irreducible over Q.

Examples:

(1) 5x5 − 9x4 − 3x2 − 12 is irreducible over Q.

(2) For any prime p, the p-th cyclotomic polynomial

Φp(x) :=
xp − 1

x− 1
= xp−1 + xp−2 + · · ·+ x+ 1

is irreducible over Q.

Theorem 4.11. Let F be a field. For any polynomial f(x) ∈ F [x], the following
statements are equivalent:

(1) F [x]/〈f(x)〉 is a field.

(2) F [x]/〈f(x)〉 is an integral domain.

(3) f(x) is irreducible over F .
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