Math 3030 Algebra I Review of basic ring theory

1 Rings

Definition 1.1. A ring $(R, +, \cdot)$ is a nonempty set R together with two binary operations: addition and multiplication $+, \cdot : R \times R \to R$ such that

- (1) (R, +) is an abelian group;
- (2) \cdot is associative; and
- (3) \cdot is distributive over +, i.e.

$$a(b+c) = ab + ac$$
 and $(a+b)c = ac + bc$

for any $a, b, c \in R$.

Definition 1.2. Let $(R, +, \cdot)$ be a ring.

- We say R is commutative if ab = ba for any $a, b \in R$.
- We say R is a ring with unity if there exists a multiplicative identity in R, i.e. an element $1 \in R$ such that a1 = 1a = a for any $a \in R$.

Here are some examples of rings:

- (1) Z, Q, R, C (equipped with the usual addition and multiplication) are all commutative rings with unity.
- (2) Let R be any commutative ring with unity. Then the set of polynomials R[x] with coefficients in R is also a commutative ring with unity. Examples are Z[x], Q[x], ℝ[x], ℂ[x].
- (3) For an integer $n \ge 2$, $n\mathbb{Z}$ is a commutative ring without unity.
- (4) The only ring in which 1 = 0 is $R = \{0\}$, called the zero ring.
- (5) For any nonzero integer n, \mathbb{Z}_n is a finite commutative ring with unity.
- (6) Let R be any commutative ring with unity. Then for any integer n ≥ 2, the set M_{n×n}(R) of n × n matrices with entries in R is a noncommutative ring with unity.

2 Special classes of rings

Definition 2.1. Let R be a ring. If $a, b \in R$ are two nonzero elements of R such that ab = 0, then we call them **0-divisors**. (More precisely, a is called a **left 0-divisor** while b is called a **right 0-divisor**.)

Definition 2.2. An *integral domain* is a commutative ring with unity $1 \neq 0$ containing no 0-divisors.

Proposition 2.3. Let R be a commutative ring with unity. Then R is an integral domain if and only if the cancellation law hold for multiplication, i.e. whenever ca = cb and $c \neq 0$, we have a = b.

Examples:

- (1) The finite ring \mathbb{Z}_n is an integral domain if and only if *n* is a prime.
- (2) If D is an integral domain, then the polynomial ring D[x] is also an integral domain.

Definition 2.4. Let R be a ring with unity $1 \neq 0$. A nonzero element $u \in R$ is called a **unit** if it has a multiplicative inverse in R, i.e. there exists $u^{-1} \in R$ such that $uu^{-1} = u^{-1}u = 1$.

Definition 2.5. A *field* is a commutative ring with unity $1 \neq 0$ in which every nonzero element is a unit.

It is not hard to see that any field is an integral domain. Conversely, we have the following

Proposition 2.6. Any finite integral domain is a field.

Examples:

- (1) \mathbb{Q} , \mathbb{R} , \mathbb{C} are fields.
- (2) By the above proposition, \mathbb{Z}_p is a finite field for any prime p.
- (3) $\mathbb{Q}[\sqrt{2}] := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ is a field.

Definition 2.7. Let D be an integral domain. If there exists a positive integer n such that na = 0 for any $a \in D$, then D is said to be of finite characteristic, and the smallest such positive integer is called the characteristic of D, denoted by char(D). If no such integer exists, then we say D is of characteristic 0, written as char(D) = 0.

Proposition 2.8. If $n1 \neq 0$ for any positive integer n, then D is of characteristic 0. Otherwise, $char(D) = \min\{n \in \mathbb{Z}_{>0} \mid n1 = 0\}$.

Proposition 2.9. The characteristic of an integral domain is either 0 or a prime p.

Examples:

(1) $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ are of characteristic 0.

(2) \mathbb{Z}_p is of characteristic p.

Given an integral domain D, the field of quotients (or fraction field) of D, denoted by Frac(D), is the quotient of the product $D \times (D \setminus \{0\})$ by the equivalence relation:

$$(a,b) \sim (c,d)$$
 if and only if $ad = bc$

Proposition 2.10. *Frac(D) is a field under the addition and multiplication inherited from D, with additive identity* [(0,1)]*, multiplicative identity* [(1,1)]*, and the inverse of a nonzero element* [(a,b)] *given by* [(b,a)]*.*

Furthermore, there is a natural embedding $j : D \hookrightarrow Frac(D)$ by $a \mapsto [(a, 1)]$, which is universal among all embeddings from D to a field, i.e. for any embedding $\iota : D \hookrightarrow L$ from D into a field L, there exists an embedding $i : Frac(D) \hookrightarrow L$ such that $\iota = i \circ j$.

Examples:

- (1) $\operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$.
- (2) Let F be a field. Then Frac(F[x]) is called the field of rational functions over F, denoted by F(x). Formally, we can write

$$F(x) = \left\{ \frac{f(x)}{g(x)} \mid f(x), g(x) \in F[x], \ g(x) \neq 0 \right\}.$$

3 Ring homomorphisms; subrings and ideals

Definition 3.1. Let R and R' be rings. A map $\phi : R \to R'$ called a ring homomorphism (or simply homomorphism) if

(1) $\phi(a+b) = \phi(a) + \phi(b)$, and

(2)
$$\phi(ab) = \phi(a)\phi(b)$$

for any $a, b \in R$. If ϕ is furthermore bijective, then it is called an **isomorphism**. We say that R is **isomorphic** to R', denoted by $R \cong R'$, if there exists an isomorphism ϕ from R to R'.

Remark 3.2. If ϕ is an isomorphism, then ϕ^{-1} is automatically an isomorphism.

Examples of ring homomorphisms:

- (1) For any positive integer n, the map $\phi : \mathbb{Z} \to \mathbb{Z}_n$ defined by mapping k to its reminder when divided by n is a surjective ring homomorphism.
- (2) Let R be the set of all functions from R to R. Fix a ∈ R. Then the evaluation map φ_a : R → R defined by f ↦ f(a) is a ring homomorphism.
- (3) \mathbb{Z} and $2\mathbb{Z}$ are isomorphic as abelian groups but *not* as rings.

Proposition 3.3. A subring of a ring $(R, +, \cdot)$ is a nonempty subset $S \subset R$ closed under + and \cdot which forms a ring under the inherited operations.

Proposition 3.4. Let $\phi : R \to R'$ be a ring homomorphism. Then

- (1) $\phi(0) = 0'$, where 0 and 0' are the additive identities in R and R' respectively.
- (2) For any $a \in R$, $\phi(-a) = -\phi(a)$.
- (3) For any subring $S \subset R$, $\phi(S)$ is a subring of R'.
- (4) For any subring $S' \subset R'$, $\phi^{-1}(S')$ is a subring of R.
- (5) If R has a multiplicative identity 1_R , then $\phi(1_R)$ is a multiplicative identity of $\phi(R)$.

Remark 3.5. If ϕ is nonzero and R' has no 0-divisors, then $\phi(1_R)$ is a multiplicative identity of R'.

Definition 3.6. Let $\phi : R \to R'$ be a ring homomorphism. The subring

$$\ker \phi := \phi^{-1}(0') = \{ a \in R \mid \phi(a) = 0' \}$$

is called the **kernel** of ϕ .

Proposition 3.7. A ring homomorphism $\phi : R \to R'$ is injective if and only if ker $\phi = \{0\}$.

Definition 3.8. An additive subgroup I of a ring R such that $aI \subset I$ and $Ib \subset I$ for any $a, b \in R$ is called an *ideal* of R.

Remark 3.9. An ideal is in particular a subring.

Proposition 3.10. For any homomorphism $\phi : R \to R'$, ker ϕ is an ideal of R.

Theorem 3.11. Let $I \subset R$ be an additive subgroup. Then the multiplication

$$(a+I)(b+I) = (ab) + I$$

on additive cosets is well-defined if and only if I is an ideal.

Corollary 3.12. Let $I \subset R$ be an ideal. Then the additive cosets of I in R form a ring, called the **quotient ring** of R by I and denoted by R/I, under the operations

$$(a + I) + (b + I) = (a + b) + I,$$

 $(a + I)(b + I) = (ab) + I.$

Proposition 3.13. Let $I \subset R$ be an ideal. Then the map $\pi : R \to R/I$ defined by $\pi(a) = a + I$ is a surjective ring homomorphism with ker $\pi = I$; this map is called the **projection map** or **canonical map**.

Hence "ideal" and "kernel of a ring homomorphism" are equivalent concepts.

Theorem 3.14. (First Isomorphism Theorem) Let $\varphi : R \to R'$ be a ring homomorphism. Let $I = \ker \varphi$. Then the map $\overline{\varphi} : R/I \to \varphi(R)$ defined by

$$\overline{\varphi}(a+I) = \varphi(a)$$

is an isomorphism such that $\varphi = \overline{\varphi} \circ \pi$.

Here are some examples:

- (1) $n\mathbb{Z} \subset \mathbb{Z}$ is an ideal, and $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$ as rings.
- (2) Let R be the set of all functions from ℝ to ℝ. Fix a ∈ ℝ. Then I_a := {f ∈ R | f(a) = 0} is an ideal of R since it is the kernel of the evaluation map φ_a, and R/I_a ≅ ℝ as rings. On the other hand, the subset S consisting of all constant functions is a subring but *not* an ideal.
- (3) For any ring R, we have both {0} and R are ideals of R. An ideal I ⊊ R is called proper and ideal {0} ⊊ I ⊂ R is called nontrivial.
- (4) Let R be a commutative ring. Let $a \in R$. Then the set of all multiples of a

$$\langle a \rangle := \{ ra \mid r \in R \}$$

is an ideal, called the **principal ideal generated by** *a*. If *R* has a multiplicative identity 1, then $R = \langle 1 \rangle$.

(5) More generally, let $A \subset R$ be a nonempty subset of a commutative ring R. Then the set of all finite linear combinations of elements of A

 $\langle A \rangle := \{ r_1 a_1 + \dots + r_k a_k \mid k \in \mathbb{Z}_{>0}, r_i \in R, a_i \in A \}$

is an ideal, called the **ideal generated by** A.

Proposition 3.15. Let F be a field.

- (i) If char(F) = 0, then there exists an embedding $\mathbb{Q} \hookrightarrow F$.
- (ii) If char(F) = p, then there exists an embedding $\mathbb{Z}_p \hookrightarrow F$.

Because of this, the fields \mathbb{Q} , \mathbb{Z}_p (where p is a prime) are called **prime fields**.

4 Polynomial rings

Definition 4.1. Let R be a commutative ring with unity $1 \neq 0$. A polynomial f(x) with coefficients in R is a formal sum

$$f(x) = \sum_{i=0}^{\infty} a_i x^i$$

where $a_i \in R$ and $a_i = 0$ for all but finitely many *i*'s. If $a_i \neq 0$ for some *i*, then the largest such integer is called the **degree** of f(x). We denote by R[x] the set of all polynomials with coefficients in R. **Proposition 4.2.** R[x] is a commutative ring with unity under the usual addition and multiplication of polynomials.

Proposition 4.3 (Division algorithm). Let F be a field. Let $f(x), g(x) \in F[x]$ be two nonzero polynomials. Then there exist unique $q(x), r(x) \in F[x]$ such that

$$f(x) = q(x)g(x) + r(x),$$

and either r(x) = 0 or $\deg r(x) < \deg g(x)$.

Corollary 4.4. An element $a \in F$ is a **root** (or zero) of f(x) (i.e. f(a) = 0) if and only if f(x) is divisible by x - a.

Corollary 4.5. A nonzero polynomial $f(x) \in F[x]$ of positive degree n can have at most n roots in F.

Definition 4.6. An integral domain D is called a **principal ideal domain (PID)** if every ideal in D is principal.

An example of PID is given by \mathbb{Z} .

Proposition 4.7. For any field F, F[x] is a PID.

Definition 4.8. A nonconstant polynomial $f(x) \in F[x]$ is said to be **irreducible over** F if it cannot be written as a product g(x)h(x) where both g(x) and h(x) have degrees lower than that of f(x). Otherwise, f(x) is said to be reducible.

Examples:

- (1) $x^2 + 1$ is irreducible over \mathbb{R} but reducible over \mathbb{C} .
- (2) $f(x) = x^3 + 3x + 2 \in \mathbb{Z}_5[x]$ is irreducible over \mathbb{Z}_5 since it has no roots in \mathbb{Z}_5 (which is easy to check).

Lemma 4.9 (Gauss' lemma). If $f(x) \in \mathbb{Z}[x]$ can be factored as a product of two polynomials in $\mathbb{Q}[x]$, it can also be factored as a product of two polynomials in $\mathbb{Z}[x]$.

Theorem 4.10 (Eisenstein criterion). Let $p \in \mathbb{Z}$ be a prime. Let $f(x) = a_n x^n + \cdots + a_1 x + a_0 \in \mathbb{Z}[x]$. Suppose that $p \nmid a_n$, $p \mid a_i$ for all i < n and $p^2 \nmid a_0$. Then f(x) is irreducible over \mathbb{Q} .

Examples:

- (1) $5x^5 9x^4 3x^2 12$ is irreducible over \mathbb{Q} .
- (2) For any prime *p*, the *p*-th cyclotomic polynomial

$$\Phi_p(x) := \frac{x^p - 1}{x - 1} = x^{p - 1} + x^{p - 2} + \dots + x + 1$$

is irreducible over \mathbb{Q} .

Theorem 4.11. Let F be a field. For any polynomial $f(x) \in F[x]$, the following statements are equivalent:

- (1) $F[x]/\langle f(x) \rangle$ is a field.
- (2) $F[x]/\langle f(x) \rangle$ is an integral domain.
- (3) f(x) is irreducible over F.