Math 3030 Algebra I
Review of basic ring theory

1 Rings

Definition 1.1. A ring (R, +,-) is a nonempty set R together with two binary opera-
tions: addition and multiplication +,- : R x R — R such that

(1) (R,+) is an abelian group;
(2) - is associative; and
(3) - is distributive over +, i.e.
a(b+c) = ab+ acand (a+ b)e = ac + be
forany a,b,c € R.
Definition 1.2. Ler (R, +,-) be a ring.
o We say R is commutative if ab = ba for any a,b € R.

o We say R is a ring with unity if there exists a multiplicative identity in R, i.e. an
element 1 € R such that al = la = a forany a € R.

Here are some examples of rings:

(1) Z,Q, R, C (equipped with the usual addition and multiplication) are all commu-
tative rings with unity.

(2) Let R be any commutative ring with unity. Then the set of polynomials R[z]
with coefficients in R is also a commutative ring with unity. Examples are Z|x],
Q[z], Rz], Clx].

(3) For an integer n > 2, nZ is a commutative ring without unity.
(4) The only ring in which 1 = 0is R = {0}, called the zero ring.
(5) For any nonzero integer n, Z,, is a finite commutative ring with unity.

(6) Let R be any commutative ring with unity. Then for any integer n > 2, the set
M, «n(R) of n X n matrices with entries in R is a noncommutative ring with
unity.



2 Special classes of rings

Definition 2.1. Let R be a ring. If a,b € R are two nonzero elements of R such that
ab = 0, then we call them 0-divisors. (More precisely, a is called a left 0-divisor while
b is called a right 0-divisor.)

Definition 2.2. An integral domain is a commutative ring with unity 1 # 0 containing
no 0-divisors.

Proposition 2.3. Let R be a commutative ring with unity. Then R is an integral domain
if and only if the cancellation law hold for multiplication, i.e. whenever ca = cb and
¢ # 0, we have a = b.

Examples:
(1) The finite ring Z,, is an integral domain if and only if n is a prime.

(2) If D is an integral domain, then the polynomial ring D[z] is also an integral
domain.

Definition 2.4. Let R be a ring with unity 1 # 0. A nonzero element u € R is called
a unit if it has a multiplicative inverse in R, i.e. there exists u=' € R such that
wut = vy = 1

Definition 2.5. A field is a commutative ring with unity 1 # 0 in which every nonzero
element is a unit.

It is not hard to see that any field is an integral domain. Conversely, we have the
following

Proposition 2.6. Any finite integral domain is a field.
Examples:
(1) Q, R, C are fields.
(2) By the above proposition, Z,, is a finite field for any prime p.
(3) Q[V2] :={a+bv2|a,bec Q}is afield.

Definition 2.7. Let D be an integral domain. If there exists a positive integer n. such
that na = 0 for any a € D, then D is said to be of finite characteristic, and the
smallest such positive integer is called the characteristic of D, denoted by char(D). If
no such integer exists, then we say D is of characteristic 0, written as char(D) = 0.

Proposition 2.8. If nl # 0 for any positive integer n, then D is of characteristic 0.
Otherwise, char(D) = min{n € Z-o | n1 = 0}.

Proposition 2.9. The characteristic of an integral domain is either 0 or a prime p.
Examples:

(1) Z,Q, R, C are of characteristic 0.



(2) Zy, is of characteristic p.

Given an integral domain D, the field of quotients (or fraction field) of D, denoted
by Frac(D), is the quotient of the product D x (D \ {0}) by the equivalence relation:

(a,b) ~ (c¢,d) if and only if ad = be.

Proposition 2.10. Frac(D) is a field under the addition and multiplication inherited
Sfrom D, with additive identity [(0, 1)], multiplicative identity [(1,1)], and the inverse of
a nonzero element [(a, b)] given by [(b, a)).

Furthermore, there is a natural embedding j : D — Frac(D) by a — [(a,1)],
which is universal among all embeddings from D to a field, i.e. for any embedding
t: D < L from D into a field L, there exists an embedding i : Frac(D) < L such
that L =10 j.

Examples:
(1) Frac(Z) = Q.

(2) Let F be a field. Then Frac(F'[z]) is called the field of rational functions over
F, denoted by F'(x). Formally, we can write

= M x), g(x T T
F) = {21 10).9(0) € Flul gta) 20}

3 Ring homomorphisms; subrings and ideals

Definition 3.1. Let R and R’ be rings. A map ¢ : R — R’ called a ring homomor-
phism (or simply homomorphism) if

(1) ¢(a+b) = ¢(a) + ¢(b), and
(2) d(ab) = ¢(a)(b)

for any a,b € R. If ¢ is furthermore bijective, then it is called an isomorphism. We
say that R is isomorphic to R/, denoted by R = R/, if there exists an isomorphism ¢
from Rto R/

Remark 3.2. If ¢ is an isomorphism, then ¢~ is automatically an isomorphism.
Examples of ring homomorphisms:

(1) For any positive integer n, the map ¢ : Z — Z, defined by mapping k to its
reminder when divided by n is a surjective ring homomorphism.

(2) Let R be the set of all functions from R to R. Fix a € R. Then the evaluation
map ¢, : R — R defined by f — f(a) is a ring homomorphism.

(3) Z and 27 are isomorphic as abelian groups but not as rings.



Proposition 3.3. A subring of a ring (R, +,-) is a nonempty subset S C R closed
under + and - which forms a ring under the inherited operations.

Proposition 3.4. Let ¢ : R — R’ be a ring homomorphism. Then
(1) ¢(0) =0, where 0 and 0’ are the additive identities in R and R’ respectively.
(2) Foranya € R, ¢(—a) = —¢(a).
(3) Forany subring S C R, ¢(S) is a subring of R’
(4) For any subring S’ C R, ¢~1(S’) is a subring of R.

(5) If R has a multiplicative identity 1, then ¢(1g) is a multiplicative identity of
P(R).

Remark 3.5. If ¢ is nonzero and R’ has no 0-divisors, then ¢(1g) is a multiplicative
identity of R'.

Definition 3.6. Let ¢ : R — R’ be a ring homomorphism. The subring
ker ¢ := ¢~ (0') = {a € R| ¢(a) = 0'}
is called the kernel of ¢.

Proposition 3.7. A ring homomorphism ¢ : R — R’ is injective if and only if ker ¢ =
{0}

Definition 3.8. An additive subgroup I of a ring R such that al C I and Ib C I for
any a,b € R is called an ideal of R.

Remark 3.9. An ideal is in particular a subring.
Proposition 3.10. For any homomorphism ¢ : R — R/, ker ¢ is an ideal of R.

Theorem 3.11. Let I C R be an additive subgroup. Then the multiplication
(a+D)(b+1)=(ab)+ 1T
on additive cosets is well-defined if and only if I is an ideal.

Corollary 3.12. Let I C R be an ideal. Then the additive cosets of I in R form a ring,
called the quotient ring of R by I and denoted by R/I, under the operations
(a+D)+(b+1)=(a+b)+1,
(a+1)(b+1)=(ab) +1I.
Proposition 3.13. Ler I C R be an ideal. Then the map = : R — R/I defined by

7(a) = a + I is a surjective ring homomorphism with ker m = I, this map is called
the projection map or canonical map.

Hence “ideal” and “kernel of a ring homomorphism” are equivalent concepts.



Theorem 3.14. (First Isomorphism Theorem) Let ¢ : R — R’ be a ring homomor-
phism. Let I = ker . Then the map @ : R/I — ¢(R) defined by

Pla+1) =p(a)
is an isomorphism such that = p o T.
Here are some examples:
(1) nZ C Zis an ideal, and Z/nZ = Z,, as rings.

(2) Let R be the set of all functions from R to R. Fix a € R. Then I, := {f € R |
f(a) = 0} is an ideal of R since it is the kernel of the evaluation map ¢, and
R/I, = R as rings. On the other hand, the subset S consisting of all constant
functions is a subring but not an ideal.

(3) For any ring R, we have both {0} and R are ideals of R. An ideal I ; R is
called proper and ideal {0} & I C R is called nontrivial.

(4) Let R be a commutative ring. Let a € R. Then the set of all multiples of a
(a) :={ra|r € R}

is an ideal, called the principal ideal generated by a. If R has a multiplicative
identity 1, then R = (1).

(5) More generally, let A C R be a nonempty subset of a commutative ring R. Then
the set of all finite linear combinations of elements of A

(A) :={ria1+ - +rrag | k € Zso, r; € R, a; € A}
is an ideal, called the ideal generated by A.
Proposition 3.15. Let F be a field.
(i) If char(F') = 0, then there exists an embedding Q — F.
(ii) If char(F') = p, then there exists an embedding Z, — F.
Because of this, the fields Q, Z,, (where p is a prime) are called prime fields.

4 Polynomial rings

Definition 4.1. Let R be a commutative ring with unity 1 # 0. A polynomial f(x)
with coefficients in R is a formal sum

flx) = Z a;x’
i=0

where a; € R and a; = 0 for all but finitely many i’s. If a; # 0 for some i, then
the largest such integer is called the degree of f(x). We denote by R|x] the set of all
polynomials with coefficients in R.



Proposition 4.2. R[z] is a commutative ring with unity under the usual addition and
multiplication of polynomials.

Proposition 4.3 (Division algorithm). Let F' be a field. Let f(z), g(x) € F[z] be two
nonzero polynomials. Then there exist unique q(x),r(x) € F[x] such that
f(x) = q(x)g(z) + r(z),

and either r(x) = 0 or degr(x) < deg g(z).
Corollary 4.4. An element a € F is a root (or zero) of f(x) (i.e. f(a) = 0) if and
only if f(x) is divisible by © — a.
Corollary 4.5. A nonzero polynomial f(x) € Flx] of positive degree n can have at
most n roots in F.
Definition 4.6. An integral domain D is called a principal ideal domain (PID) if every
ideal in D is principal.

An example of PID is given by Z.
Proposition 4.7. For any field F, F[x] is a PID.

Definition 4.8. A nonconstant polynomial f(x) € Flx] is said to be irreducible over
F if it cannot be written as a product g(x)h(x) where both g(x) and h(z) have degrees
lower than that of f(x). Otherwise, f(x) is said to be reducible.

Examples:
(1) 2 + 1 is irreducible over R but reducible over C.
() f(z) = 2% + 32 + 2 € Zs[x] is irreducible over Zs since it has no roots in Zs
(which is easy to check).

Lemma 4.9 (Gauss’ lemma). If f(x) € Zx] can be factored as a product of two
polynomials in Q[z], it can also be factored as a product of two polynomials in Z[x].

Theorem 4.10 (Eisenstein criterion). Let p € Z be a prime. Let f(z) = apz™ + -+ - +
a1x + ag € Zz). Suppose that p | a,, p | a; for all i < n and p* { ag. Then f(z) is
irreducible over Q.
Examples:
(1) 52® — 9z* — 322 — 12 is irreducible over Q.
(2) For any prime p, the p-th cyclotomic polynomial
P —1

Op(z) = ——F =" a2l Pttt

is irreducible over Q.

Theorem 4.11. Let F be a field. For any polynomial f(x) € F[x], the following
statements are equivalent:

(1) Flal/(f(z) is a fild
(2) F[z]/{f(x)) is an integral domain.
(3) f(x) is irreducible over F.



