Math 3030 Algebra I Review of basic group theory

1 Groups

Definition 1.1. *A group* (G, ∗) *is a nonempty set* G *together with a binary operation*

$$
G \times G \to G,
$$

$$
(a, b) \mapsto a * b
$$

called the group operation or "multiplication", such that

 (1) $*$ *is associative, i.e.*

$$
(a * b) * c = a * (b * c)
$$

for any $a, b, c \in G$ *.*

(2) There exists an element $e \in G$ *, called an <i>identity*, such that

 $a * e = e * a = a$

for any $a \in G$ *.*

(3) Each element $a \in G$ has an **inverse** $a^{-1} \in G$, i.e.

$$
a * a^{-1} = a^{-1} * a = e.
$$

Remark 1.2. *We often write* $a \cdot b$ *, or simply ab, to denote* $a * b$ *.*

It is straightforward to show that both the identity and inverse of any given element are unique, and also that the **cancellation laws** hold, i.e. for any $a, b, c \in G$, $ab = ac$ implies that $b = c$ and likewise $ba = ca$ implies that $b = c$, which can be used to show that $(ab)^{-1} = b^{-1}a^{-1}$ for any $a, b \in G$ (or more generally, $(a_1a_2 \cdots a_k)^{-1} =$ $a_k^{-1}a_{k-1}^{-1} \cdots a_1^{-1}$ for any $a_1, a_2, \ldots, a_k \in G$).

Definition 1.3. *The order of* G*, denoted as* |G|*, is the number of elements in* G*. We call* G *finite* (*resp. infinite*) *if* $|G| < \infty$ (*resp.* $|G| = \infty$).

Definition 1.4. *If the group operation is commutative, i.e.* $ab = ba$ *for any* $a, b \in G$, *we say that* G *is abelian; otherwise,* G *is said to be nonabelian.*

Remark 1.5. *When* G *is abelian, we usually use* + *to denote the group operation,* 0 *to denote the identity, and* $-a$ *to denote the inverse of an element* $a \in G$ *.*

Here are some examples of groups:

(1) Given any field F equipped with the addition + and multiplication \cdot , both $(F, +)$ and $(F^{\times}) = F \setminus \{0\}, \cdot)$ are abelian groups. Examples include Q, R, C with the usual addition and multiplication.

- (2) Given a commutative ring R with unity, the set of units R^{\times} is an abelian group under ring multiplication.
- (3) The set of integers $\mathbb Z$ is an abelian group under addition, but the set of nonzero integers $\mathbb{Z} \setminus \{0\}$ is *not* a group under multiplication.
- (4) For any nonzero integer n, the set (of equivalence classes) \mathbb{Z}_n is a finite abelian group under addition mod n.
- (5) Any vector space V is an abelian group under the addition. (This is part of the definition of a vector space.)
- (6) The set of all $m \times n$ matrices is an abelian group under matrix addition. More generally, given any group G and a nonempty set X , the set of all maps from X to G form a group using the group operation in G , which is abelian if G is so.
- (7) The set of all nonsingular $n \times n$ matrices with coefficients in a field F is a group under multiplication, denoted by $GL_n(F)$ and called the **general linear group** over F. For $n \geq 2$, this group is nonabelian.
- (8) Let X be a nonempty set, and let S_X be the set of all bijective maps (permutations) $\sigma : X \to X$. Then S_X is a group under composition of maps, called the symmetric group on X. For any positive integer n, the group S_{I_n} , where $I_n := \{1, \ldots, n\}$, is denoted as S_n and called the n-th symmetric group. For $n \geq 3$, S_n is a finite nonabelian group.
- (9) If G_1, G_2 are groups, then the Cartesian product $G_1 \times G_2$ is naturally a group whose multiplication is defined componentwise; this is called the **direct product** of G¹ and G2. Similarly, one can define the direct product of *any* number of groups.

2 Subgroups

Definition 2.1. *Let* $(G, *)$ *be a group. Let* $H \subset G$ *be a subset. If* H *is closed under* $*$ *, i.e.* $a * b \in H$ *for any* $a, b \in H$ *and* H *is a group under the induced group operation* $*$ *, then we call* H *a subgroup of* G *, denoted by* $H < G$ *.*

To check that a (nonempty) subset is a subgroup, we have the following very useful criterion:

Proposition 2.2. *A nonempty subset* H *of a group* G *is a subgroup if and only if* $ab^{-1} \in H$ *for any* $a, b \in H$.

Proposition 2.3. *A finite subset* H *of a group* G *is a subgroup if and only if* H *is nonempty and closed under multiplication.*

Here are some examples of subgroups:

(1) We have $\mathbb{Z} < \mathbb{Q} < \mathbb{R} < \mathbb{C}$ under addition, and $\mathbb{Q}^{\times} < \mathbb{R}^{\times} < \mathbb{C}^{\times}$ under multiplication.

- (2) For any group G, we have ${e} < G$ (called the **trivial subgroup**) and $G < G$. A subgroup $H \subsetneq G$ is called **proper** and a subgroup $\{e\} \subsetneq H < G$ is called nontrivial.
- (3) Vector subspaces are additive subgroups.
- (4) The subset

$$
SL_n(F) := \{ M \in GL_n(F) \mid \det M = 1 \}
$$

is a subgroup of $GL_n(F)$, called the **special linear group**. We also have the subgroups

$$
O_n(F) = \{ M \in GL_n(F) \mid M^T M = I_n = MM^T \},\
$$

$$
SO_n(F) = \{ M \in O_n(F) \mid \det M = 1 \}
$$

of $GL_n(F)$, called the **orthogonal group** and **special orthogonal group** respectively, where M^T denotes the transpose of M and I_n denotes the $n \times n$ identity matrix. For $F = \mathbb{C}$, we have the subgroups

$$
U(n) = \{ M \in GL_n \mid M^*M = I_n = MM^* \},
$$

$$
SU(n) = \{ M \in U_n \mid \det M = 1 \}
$$

of $GL_n(\mathbb{C})$, called the **unitary group** and **special unitary group** respectively, where M^* denotes the conjugate transpose of M. When $n = 1$, this gives the circle group

$$
U(1) = \{ z \in \mathbb{C} \mid |z| = 1 \}
$$

as a multiplicative subgroup of \mathbb{C}^{\times} .

Remark 2.4. *The above are examples of matrix groups, which are in turn examples of Lie groups. When* F *is a finite field, they for an important class of finite simple groups.*

3 Homomorphisms and isomorphisms

Definition 3.1. A map ϕ : $G \to G'$ from a group G to another group G' is called a *homomorphism if*

$$
\phi(ab) = \phi(a)\phi(b)
$$

for any $a, b \in G$ *. If* ϕ *is furthermore bijective, then it is called an <i>isomorphism*. We *say that* G *is isomorphic to G', denoted by* $G \cong G'$ *, if there exists an isomorphism* ϕ from G to G'. An isomorphism from G onto itself is called an **automorphism**; the set *of all automorphisms of a group* G *is a group itself, denoted by Aut* (G) *.*

Remark 3.2. If ϕ is an isomorphism, then ϕ^{-1} is automatically an isomorphism.

Isomorphic groups share the same algebraic properties (they only differ by relabeling of their elements). One of the most important questions in group theory is to *classify* all groups up to isomorphism.

Examples of homomorphisms:

- (1) A linear map (resp. isomorphism) between two vector spaces V and W is a homomorphism (resp. isomorphism) between the abelian groups $(V,+)$ and $(W, +).$
- (2) The determinant det : $GL_n(F) \to F^\times$ is a homomorphism.
- (3) The exponential function $\exp : (\mathbb{R}, +) \to (\mathbb{R}_{>0}, \cdot)$ is an isomorphism, whose inverse is the logarithm log.
- (4) For any nonzero integer n, $n\mathbb{Z} < \mathbb{Z}$ and the map $\phi : n\mathbb{Z} \to \mathbb{Z}$ defined by $\phi(nk) = k$ is an isomorphism. So Z and its proper subgroup $n\mathbb{Z}$ (when $|n| \geq 2$) are abstractly isomorphic.
- (5) For any positive integer n, the map $\phi : \mathbb{Z} \to \mathbb{Z}_n$ defined by mapping k to its reminder when divided by n is a surjective homomorphism.
- (6) The map

$$
SO_2(\mathbb{R}) \to U(1), \quad \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \mapsto e^{i\theta}
$$

is an isomorphism.

(7) The finite groups \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ are *not* isomorphic though they have the same order.

4 Cyclic groups; generating sets

4.1 Cyclic (sub)groups

Definition 4.1. *Let* G *be a group and* $a \in G$ *be any element. Then the subset*

$$
\langle a \rangle := \{ a^n \mid n \in \mathbb{Z} \}
$$

is a subgroup of G*, called the cyclic subgroup generated by* a*. The order of* a*, denoted by* $|a|$ *, is defined as the order of* $\langle a \rangle$ *.*

Proposition 4.2. If $|a| < \infty$, then $|a|$ is the smallest positive integer k such that $a^k = e$.

Definition 4.3. A group G is called **cyclic** if there exists $a \in G$ such that $G = \langle a \rangle$. In *this case, we say* a *generates* G*, or* a *is a generator of* G*.*

Proposition 4.4. *Every cyclic group is abelian.*

Remark 4.5. *The converse is false.*

Theorem 4.6. *(Classification of cyclic groups) Any infinite cyclic group is isomorphic to* $(\mathbb{Z}, +)$ *. Any cyclic group of finite order n is isomorphic to* $(\mathbb{Z}_n, +)$ *.*

For example, the set of *n*-th roots of unity $U_n := \{z \in \mathbb{C} \mid z^n = 1\}$ is a cyclic subgroup of $U(1)$. By the above theorem, U_n is isomorphic to \mathbb{Z}_n . (This is a better way to visualize the adjective "cyclic".) In fact, U_n is generated by $\exp \frac{2\pi i}{n}$. (How about the cyclic subgroup generated by $\exp 2\pi i t$ where $t \in \mathbb{R}$?)

Proposition 4.7. *A subgroup of a cyclic group is also cyclic.*

Corollary 4.8. Any subgroup of $\mathbb Z$ is of the form $n\mathbb Z$ for $n \in \mathbb Z$.

Theorem 4.9. *(Classification of subgroups of a finite cyclic group) Let* $G = \langle a \rangle$ *be a cyclic group of finite order n.* Let $a^s \in G$ *. Then* $|a^s| = n/d$ *where* $d = \gcd(s, n)$ *.* Moreover, $\langle a^s \rangle = \langle a^t \rangle$ if and only if $gcd(s, n) = gcd(t, n)$.

Corollary 4.10. All generators of a cyclic group $G = \langle a \rangle$ are of the form a^r where r *is relatively prime to* n*.*

For example, \mathbb{Z}_{18} is generated by 1, 5, 7, 11, 13 or 17.

4.2 Generating sets

Proposition 4.11. *The intersection of any collection of subgroups is also a subgroup.*

Definition 4.12. Let G be a group, and $A \subset G$ any subset. The smallest subgroup $\langle A \rangle$ *of* G *containing* A *is called the subgroup generated by* A*. By the above proposition, we must have*

$$
\langle A \rangle = \bigcap_{\{H < G \mid A \subset H\}} H.
$$

If $G = \langle A \rangle$ *, then we say that the subset* A **generates** G. If G is generated by a finite set A*, then we say that* G *is finitely generated.*

Remark 4.13. *In practice, the subgroup generated by a subset* A *is given by the set of all* finite *products of powers of elements in* A*, i.e.*

$$
\langle A \rangle = \{a_1^{k_1} \cdots a_n^{k_n} \mid a_i \in A, k_i \in \mathbb{Z}\}.
$$

For example, there are 2 distinct groups of order 4: the cyclic group \mathbb{Z}_4 and the Klein 4-group V , which is not cyclic, but is finitely generated and abelian; in fact, $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ is generated by $(1,0)$ and $(0,1)$.

Remark 4.14. *All groups of order less than or equal to 3 are cyclic.*

As another example, the group
$$
SL_2(\mathbb{Z})
$$
 is generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Remark 4.15. *Not all abelian groups are finitely generated, e.g.* Q*,* R*.*

5 Symmetric groups and dihedral groups

5.1 Symmetric groups

Recall that, given an integer $n \geq 2$, the *n*-th symmetric group S_n is the set of bijective maps from the set $I_n = \{1, \ldots, n\}$ onto itself equipped with the composition of maps. Elements of S_n are called **permutations** (of I_n).

For example, a permutation in S_{10} is of the form

$$
\left(\begin{array}{ccccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 10 & 6 & 7 & 8 & 9 & 1 & 4 & 2 & 5 \end{array}\right).
$$

Definition 5.1. Let i_1, i_2, \ldots, i_r $(r \leq n)$ be distinct elements of I_n . Denote by (i_1, i_2, \ldots, i_r) *the permutation*

$$
i_1 \mapsto i_2, i_2 \mapsto i_3, \ldots, i_{r-1} \mapsto i_r, i_r \mapsto i_1
$$

and $j \mapsto j$ *for any* $j \in I_n \setminus \{i_1, i_2, \ldots, i_r\}$ *. We call* (i_1, i_2, \ldots, i_r) *an* r-cycle, *and* r *is the length of the cycle. A 2-cycle is also called a transposition.*

For example, in S_5 , we have

$$
(1,3,4,5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} = (5,4,1,3).
$$

Proposition 5.2. *Every permutation* $\sigma \in S_n$ *is a product of disjoint cycles (unique up to ordering of the terms in the product). In particular,* S_n *is generated by cycles.*

For example, in S_8 , we have

$$
\left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{array}\right) = (1,3,6)(2,8)(4,7,5).
$$

Remark 5.3. *Composition of disjoint cycles is commutative.*

Proposition 5.4. *For an r-cycle* μ , we have $|\mu| = r$ *. Hence, if we write a permutation* σ *as a product of disjoint cycles* $\sigma = \mu_1 \mu_2 \cdots \mu_k$ *, then*

$$
|\sigma|=lcm(r_1,r_2,\ldots,r_k),
$$

where $r_i = |\mu_i| =$ length of μ_i .

Since $(i_1, i_2, \ldots, i_r) = (i_1, i_r)(i_1, i_{r-1}) \cdots (i_1, i_3)(i_1, i_2)$, we have

Proposition 5.5. *Every permutation is a product of transpositions. In particular,* S_n *is generated by transpositions.*

Corollary 5.6. S_n *is generated by* $(1, 2)$ *and* $(1, 2, \ldots, n)$ *.*

Note that the decomposition in Proposition 5.5 is not unique, e.g.

 $(1, 2, 3) = (1, 3)(1, 2) = (1, 3)(2, 3)(1, 2)(1, 3).$

However, the *parity* is well-defined:

Proposition 5.7. *No permutation can be expressed both as a product of an even number of transpositions and also as a product of an odd number of transpositions.*

Hence the following definition makes sense.

Definition 5.8. A permutation $\sigma \in S_n$ is called **even** (resp. **odd**) if it can be expressed *as a product of an even (resp. odd) number of transpositions.*

Proposition 5.9. Let A_n be the subset of all even permutations in S_n . Then A_n is a *subgroup, called the n*-th alternating group. Moreover, the order of A_n is $|S_n|/2 =$ n!/2*.*

5.2 Dihedral groups

Given an integer $n \geq 3$, we let $\Delta = \Delta_n \subset \mathbb{R}^2$ be a regular *n*-gon centered at the origin. An isometry is a distance-preserving map between metric spaces. If we equip \mathbb{R}^2 with the Euclidean metric, then a **symmetry** of Δ is an isometry (or rigid motion) $\phi: \mathbb{R}^2 \to \mathbb{R}^2$ such that $\phi(\Delta) = \Delta$.

Definition 5.10. *The n*-th dihedral group D_n is the set of symmetries of Δ *equipped with composition of maps.*

We make the following observations:

- (1) Enumerating the vertices of Δ as $1, 2, \ldots, n$ (say, in the counter-clockwise direction), we can view each element of D_n as a permutation of $I_n = \{1, 2, \ldots, n\}.$ Also note that two distinct symmetries will give rise to two distinct permutations of I_n . So we may regard D_n as a subgroup of S_n .
- (2) There is a complete classification of isometries of \mathbb{R}^2 : **translations**, rotations, reflections and glide reflections. But a symmetry of Δ fixes the origin $0 \in$ \mathbb{R}^2 and both translations and glide reflections have no fixed points, so that D_n consists of *only* rotations and reflections.
- (3) Let $a \in D_n$ be the rotation by the angle $2\pi/n$ in the counter-clockwise direction. Then the set of rotations in D_n is given by $\langle a \rangle = \{id, a, a^2, \dots, a^{n-1}\}.$ On the other hand, there are *n* reflections in D_n . So we conclude that

$$
|D_n|=2n.
$$

Furthermore, the composition of two reflections is a rotation (which can be seen by flipping a 2-dollar coin). Hence if we let $b \in D_n$ be any reflection, then the set of reflections in D_n is given by $\{b, ab, a^2b, \dots, a^{n-1}b\}$. In particular,

$$
D_n = \langle a, b \rangle.
$$

(4) There are three relations among a and b :

$$
a^n = 1, \ b^2 = 1, \ ab = ba^{-1}.
$$

(Again you can confirm this by playing with a 2-dollar coin.) In fact, they are all the relations, so that we have a presentation

$$
D_n = \langle a, b \mid a^n = b^2 = abab = 1 \rangle.
$$

Remark 5.11. *Some authors use* D_{2n} *to denote the n*-th dihedral group. An excellent *reference for dihedral groups and other interesting groups of symmetries is Michael Artin's textbook* Algebra *(Chapter 5).*

Remark 5.12. *The dihedral groups form a class of finite subgroups of* $SO₃(\mathbb{R})$ *. The others are given by: finite cyclic groups and the groups of symmetries of the* Platonic solids *(there are 5 of such solids, corresponding to 3 different groups).*

6 Cosets and the theorem of Lagrange

Given a subgroup $H < G$, we can define two equivalence relations:

$$
a \sim_L b \Leftrightarrow a^{-1}b \in H,
$$

$$
a \sim_R b \Leftrightarrow ab^{-1} \in H.
$$

These induce two partitions of G , whose equivalence classes are called cosets of H :

Definition 6.1. *Let* $H < G$ *, and* $a \in G$ *. The sets* $aH := \{ah \mid h \in H\}$ *and* $Ha := \{ha \mid h \in H\}$ are called the **left** and **right coset** of H containing a respectively.

Here are some examples:

(1) Let n be a positive integer. Consider the subgroup $n\mathbb{Z} < \mathbb{Z}$. Then the cosets are given by

$$
\{k + n\mathbb{Z} \mid k \in \mathbb{Z}\} = \{k + n\mathbb{Z} \mid k \in \{0, 1, \dots, n - 1\}\},\
$$

which is in a 1-1 correspondence with elements of \mathbb{Z}_n .

Remark 6.2. *When* G *is abelian, any left coset is equal (as a subset) to the corresponding right coset, and we usually use* $a + H$ *to denote a coset.*

(2) For $\mathbb{Z} < \mathbb{R}$, the cosets are given by

$$
\{t + \mathbb{Z} \mid t \in \mathbb{R}\} = \{t + \mathbb{Z} \mid t \in [0, 1)\},\
$$

which is in a 1-1 correspondence with the circle group $U(1)$ (by mapping $t + \mathbb{Z}$ to $\exp 1\pi i t$.

(3) Given a vector subspace $W \subset V$, the cosets of the additive subgroup $(W, +)$ < $(V, +)$ are given by the *affine translates* of the subspace W :

$$
\{v + W \mid v \in V\}.
$$

If we choose another subspace $Q \subset V$ which is complementary to W, i.e. such that $Q \cap W = \{0\}$ and $\dim(Q) = \dim(V) - \dim(W)$, then each coset is represented by a unique element in Q:

$$
\{v + W \mid v \in V\} = \{v + W \mid v \in Q\}.
$$

(4) Consider $S_3 = {\text{id}, \rho, \rho^2, \mu, \rho\mu, \rho^2\mu}$, where $\rho = (1, 2, 3)$ and $\mu = (1, 2)$. Let H be the cyclic subgroup generated by μ . Then the left cosets are

$$
H = \{\mathrm{id}, \mu\}, \ \rho H = \{\rho, \rho\mu\}, \ \rho^2 H = \{\rho^2, \rho^2\mu\},
$$

while the right cosets are

$$
H = \{\mathrm{id}, \mu\}, H\rho = \{\rho, \rho^2\mu\}, H\rho^2 = \{\rho^2, \rho\mu\}.
$$

Note that $\rho H \neq H\rho$ and $\rho^2 H \neq H\rho^2$.

Since any two cosets are of the same cardinality as H , we have the important:

Theorem 6.3. *(Theorem of Lagrange) Suppose that* G *is a finite group. Then* |H| *divides* $|G|$ *for any subgroup* $H < G$ *.*

Corollary 6.4. *Suppose that* G *is a finite group. Then* $a^{|G|} = e$ *for any* $a \in G$ *.*

Corollary 6.5. *Every group of prime order is cyclic.*

Definition 6.6. Let $H < G$. The number of distinct left (or right) cosets of H in G, *denoted by* $[G : H]$ *, is called the index of H in G.*

Remark 6.7. *The index* [G : H] *may be infinite. But if* G *is finite, then (the proof of) the Theorem of Lagrange implies that*

$$
|G| = [G : H]|H|.
$$