Math 3030 Algebra I Review of basic group theory

1 Groups

Definition 1.1. A group (G, *) is a nonempty set G together with a binary operation

$$\begin{aligned} G\times G\to G,\\ (a,b)\mapsto a*b, \end{aligned}$$

called the group operation or "multiplication", such that

(1) * is associative, i.e.

$$(a * b) * c = a * (b * c)$$

for any $a, b, c \in G$.

(2) There exists an element $e \in G$, called an *identity*, such that

 $a\ast e=e\ast a=a$

for any $a \in G$.

(3) Each element $a \in G$ has an inverse $a^{-1} \in G$, i.e.

 $a * a^{-1} = a^{-1} * a = e.$

Remark 1.2. We often write $a \cdot b$, or simply ab, to denote a * b.

It is straightforward to show that both the identity and inverse of any given element are unique, and also that the **cancellation laws** hold, i.e. for any $a, b, c \in G$, ab = ac implies that b = c and likewise ba = ca implies that b = c, which can be used to show that $(ab)^{-1} = b^{-1}a^{-1}$ for any $a, b \in G$ (or more generally, $(a_1a_2\cdots a_k)^{-1} = a_k^{-1}a_{k-1}^{-1}\cdots a_1^{-1}$ for any $a_1, a_2, \ldots, a_k \in G$).

Definition 1.3. The order of G, denoted as |G|, is the number of elements in G. We call G finite (resp. infinite) if $|G| < \infty$ (resp. $|G| = \infty$).

Definition 1.4. If the group operation is commutative, i.e. ab = ba for any $a, b \in G$, we say that G is **abelian**; otherwise, G is said to be **nonabelian**.

Remark 1.5. When G is abelian, we usually use + to denote the group operation, 0 to denote the identity, and -a to denote the inverse of an element $a \in G$.

Here are some examples of groups:

(1) Given any field F equipped with the addition + and multiplication \cdot , both (F, +) and $(F^{\times} := F \setminus \{0\}, \cdot)$ are abelian groups. Examples include $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ with the usual addition and multiplication.

- (2) Given a commutative ring R with unity, the set of units R^{\times} is an abelian group under ring multiplication.
- (3) The set of integers Z is an abelian group under addition, but the set of nonzero integers Z \ {0} is *not* a group under multiplication.
- (4) For any nonzero integer n, the set (of equivalence classes) Z_n is a finite abelian group under addition mod n.
- (5) Any vector space V is an abelian group under the addition. (This is part of the definition of a vector space.)
- (6) The set of all m × n matrices is an abelian group under matrix addition. More generally, given any group G and a nonempty set X, the set of all maps from X to G form a group using the group operation in G, which is abelian if G is so.
- (7) The set of all nonsingular n × n matrices with coefficients in a field F is a group under multiplication, denoted by GL_n(F) and called the general linear group over F. For n ≥ 2, this group is nonabelian.
- (8) Let X be a nonempty set, and let S_X be the set of all bijective maps (permutations) σ : X → X. Then S_X is a group under composition of maps, called the symmetric group on X. For any positive integer n, the group S_{In}, where I_n := {1,...,n}, is denoted as S_n and called the n-th symmetric group. For n ≥ 3, S_n is a finite nonabelian group.
- (9) If G_1, G_2 are groups, then the Cartesian product $G_1 \times G_2$ is naturally a group whose multiplication is defined componentwise; this is called the **direct product** of G_1 and G_2 . Similarly, one can define the direct product of *any* number of groups.

2 Subgroups

Definition 2.1. Let (G, *) be a group. Let $H \subset G$ be a subset. If H is closed under *, *i.e.* $a * b \in H$ for any $a, b \in H$ and H is a group under the induced group operation *, then we call H a **subgroup** of G, denoted by H < G.

To check that a (nonempty) subset is a subgroup, we have the following very useful criterion:

Proposition 2.2. A nonempty subset H of a group G is a subgroup if and only if $ab^{-1} \in H$ for any $a, b \in H$.

Proposition 2.3. A finite subset H of a group G is a subgroup if and only if H is nonempty and closed under multiplication.

Here are some examples of subgroups:

(1) We have $\mathbb{Z} < \mathbb{Q} < \mathbb{R} < \mathbb{C}$ under addition, and $\mathbb{Q}^{\times} < \mathbb{R}^{\times} < \mathbb{C}^{\times}$ under multiplication.

- (2) For any group G, we have {e} < G (called the trivial subgroup) and G < G. A subgroup H ≤ G is called proper and a subgroup {e} ≤ H < G is called nontrivial.
- (3) Vector subspaces are additive subgroups.
- (4) The subset

$$SL_n(F) := \{ M \in GL_n(F) \mid \det M = 1 \}$$

is a subgroup of $GL_n(F)$, called the **special linear group**. We also have the subgroups

$$O_n(F) = \{ M \in GL_n(F) \mid M^T M = I_n = M M^T \}, SO_n(F) = \{ M \in O_n(F) \mid \det M = 1 \}$$

of $GL_n(F)$, called the **orthogonal group** and **special orthogonal group** respectively, where M^T denotes the transpose of M and I_n denotes the $n \times n$ identity matrix. For $F = \mathbb{C}$, we have the subgroups

$$U(n) = \{ M \in GL_n \mid M^*M = I_n = MM^* \},\$$

$$SU(n) = \{ M \in U_n \mid \det M = 1 \}$$

of $GL_n(\mathbb{C})$, called the **unitary group** and **special unitary group** respectively, where M^* denotes the conjugate transpose of M. When n = 1, this gives the **circle group**

$$U(1) = \{ z \in \mathbb{C} \mid |z| = 1 \}$$

as a multiplicative subgroup of \mathbb{C}^{\times} .

Remark 2.4. The above are examples of matrix groups, which are in turn examples of Lie groups. When F is a finite field, they for an important class of finite simple groups.

3 Homomorphisms and isomorphisms

Definition 3.1. A map $\phi : G \to G'$ from a group G to another group G' is called a *homomorphism* if

$$\phi(ab) = \phi(a)\phi(b)$$

for any $a, b \in G$. If ϕ is furthermore bijective, then it is called an **isomorphism**. We say that G is **isomorphic** to G', denoted by $G \cong G'$, if there exists an isomorphism ϕ from G to G'. An isomorphism from G onto itself is called an **automorphism**; the set of all automorphisms of a group G is a group itself, denoted by Aut(G).

Remark 3.2. If ϕ is an isomorphism, then ϕ^{-1} is automatically an isomorphism.

Isomorphic groups share the same algebraic properties (they only differ by relabeling of their elements). One of the most important questions in group theory is to *classify* all groups up to isomorphism.

Examples of homomorphisms:

- (1) A linear map (resp. isomorphism) between two vector spaces V and W is a homomorphism (resp. isomorphism) between the abelian groups (V, +) and (W, +).
- (2) The determinant det : $GL_n(F) \to F^{\times}$ is a homomorphism.
- (3) The exponential function $\exp : (\mathbb{R}, +) \to (\mathbb{R}_{>0}, \cdot)$ is an isomorphism, whose inverse is the logarithm log.
- (4) For any nonzero integer n, $n\mathbb{Z} < \mathbb{Z}$ and the map $\phi : n\mathbb{Z} \to \mathbb{Z}$ defined by $\phi(nk) = k$ is an isomorphism. So \mathbb{Z} and its proper subgroup $n\mathbb{Z}$ (when $|n| \ge 2$) are abstractly isomorphic.
- (5) For any positive integer n, the map $\phi : \mathbb{Z} \to \mathbb{Z}_n$ defined by mapping k to its reminder when divided by n is a surjective homomorphism.
- (6) The map

$$SO_2(\mathbb{R}) \to U(1), \quad \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix} \mapsto e^{i\theta}$$

is an isomorphism.

(7) The finite groups \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ are *not* isomorphic though they have the same order.

4 Cyclic groups; generating sets

4.1 Cyclic (sub)groups

Definition 4.1. Let G be a group and $a \in G$ be any element. Then the subset

$$\langle a \rangle := \{ a^n \mid n \in \mathbb{Z} \}$$

is a subgroup of G, called the **cyclic subgroup** generated by a. The **order** of a, denoted by |a|, is defined as the order of $\langle a \rangle$.

Proposition 4.2. If $|a| < \infty$, then |a| is the smallest positive integer k such that $a^k = e$.

Definition 4.3. A group G is called cyclic if there exists $a \in G$ such that $G = \langle a \rangle$. In this case, we say a generates G, or a is a generator of G.

Proposition 4.4. Every cyclic group is abelian.

Remark 4.5. The converse is false.

Theorem 4.6. (*Classification of cyclic groups*) Any infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$. Any cyclic group of finite order n is isomorphic to $(\mathbb{Z}_n, +)$.

For example, the set of *n*-th roots of unity $U_n := \{z \in \mathbb{C} \mid z^n = 1\}$ is a cyclic subgroup of U(1). By the above theorem, U_n is isomorphic to \mathbb{Z}_n . (This is a better way to visualize the adjective "cyclic".) In fact, U_n is generated by $\exp \frac{2\pi i}{n}$. (How about the cyclic subgroup generated by $\exp 2\pi it$ where $t \in \mathbb{R}$?)

Proposition 4.7. A subgroup of a cyclic group is also cyclic.

Corollary 4.8. Any subgroup of \mathbb{Z} is of the form $n\mathbb{Z}$ for $n \in \mathbb{Z}$.

Theorem 4.9. (*Classification of subgroups of a finite cyclic group*) Let $G = \langle a \rangle$ be a cyclic group of finite order n. Let $a^s \in G$. Then $|a^s| = n/d$ where $d = \gcd(s, n)$. Moreover, $\langle a^s \rangle = \langle a^t \rangle$ if and only if $\gcd(s, n) = \gcd(t, n)$.

Corollary 4.10. All generators of a cyclic group $G = \langle a \rangle$ are of the form a^r where r is relatively prime to n.

For example, \mathbb{Z}_{18} is generated by 1, 5, 7, 11, 13 or 17.

4.2 Generating sets

Proposition 4.11. The intersection of any collection of subgroups is also a subgroup.

Definition 4.12. Let G be a group, and $A \subset G$ any subset. The smallest subgroup $\langle A \rangle$ of G containing A is called the **subgroup generated by** A. By the above proposition, we must have

$$\langle A \rangle = \bigcap_{\{H < G | A \subset H\}} H.$$

If $G = \langle A \rangle$, then we say that the subset A generates G. If G is generated by a finite set A, then we say that G is finitely generated.

Remark 4.13. In practice, the subgroup generated by a subset A is given by the set of all finite products of powers of elements in A, i.e.

$$\langle A \rangle = \{ a_1^{k_1} \cdots a_n^{k_n} \mid a_i \in A, k_i \in \mathbb{Z} \}.$$

For example, there are 2 distinct groups of order 4: the cyclic group \mathbb{Z}_4 and the **Klein 4-group** V, which is not cyclic, but is finitely generated and abelian; in fact, $V \cong \mathbb{Z}_2 \times \mathbb{Z}_2$ is generated by (1,0) and (0,1).

Remark 4.14. All groups of order less than or equal to 3 are cyclic.

As another example, the group
$$SL_2(\mathbb{Z})$$
 is generated by $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Remark 4.15. Not all abelian groups are finitely generated, e.g. \mathbb{Q} , \mathbb{R} .

5 Symmetric groups and dihedral groups

5.1 Symmetric groups

Recall that, given an integer $n \ge 2$, the *n*-th symmetric group S_n is the set of bijective maps from the set $I_n = \{1, ..., n\}$ onto itself equipped with the composition of maps. Elements of S_n are called **permutations** (of I_n).

For example, a permutation in S_{10} is of the form

Definition 5.1. Let i_1, i_2, \ldots, i_r $(r \leq n)$ be distinct elements of I_n . Denote by (i_1, i_2, \ldots, i_r) the permutation

$$i_1 \mapsto i_2, i_2 \mapsto i_3, \ldots, i_{r-1} \mapsto i_r, i_r \mapsto i_1$$

and $j \mapsto j$ for any $j \in I_n \setminus \{i_1, i_2, \ldots, i_r\}$. We call (i_1, i_2, \ldots, i_r) an *r*-cycle, and *r* is the length of the cycle. A 2-cycle is also called a transposition.

For example, in S_5 , we have

$$(1,3,4,5) = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{pmatrix} = (5,4,1,3)$$

Proposition 5.2. Every permutation $\sigma \in S_n$ is a product of disjoint cycles (unique up to ordering of the terms in the product). In particular, S_n is generated by cycles.

For example, in S_8 , we have

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 8 & 6 & 7 & 4 & 1 & 5 & 2 \end{pmatrix} = (1,3,6)(2,8)(4,7,5).$$

Remark 5.3. Composition of disjoint cycles is commutative.

Proposition 5.4. For an *r*-cycle μ , we have $|\mu| = r$. Hence, if we write a permutation σ as a product of disjoint cycles $\sigma = \mu_1 \mu_2 \cdots \mu_k$, then

$$\sigma| = lcm(r_1, r_2, \ldots, r_k),$$

where $r_i = |\mu_i| = length of \mu_i$.

Since $(i_1, i_2, \dots, i_r) = (i_1, i_r)(i_1, i_{r-1}) \cdots (i_1, i_3)(i_1, i_2)$, we have

Proposition 5.5. Every permutation is a product of transpositions. In particular, S_n is generated by transpositions.

Corollary 5.6. S_n is generated by (1, 2) and $(1, 2, \ldots, n)$.

Note that the decomposition in Proposition 5.5 is not unique, e.g.

(1, 2, 3) = (1, 3)(1, 2) = (1, 3)(2, 3)(1, 2)(1, 3).

However, the *parity* is well-defined:

Proposition 5.7. *No permutation can be expressed both as a product of an even number of transpositions and also as a product of an odd number of transpositions.*

Hence the following definition makes sense.

Definition 5.8. A permutation $\sigma \in S_n$ is called **even** (resp. **odd**) if it can be expressed as a product of an even (resp. odd) number of transpositions.

Proposition 5.9. Let A_n be the subset of all even permutations in S_n . Then A_n is a subgroup, called the *n*-th alternating group. Moreover, the order of A_n is $|S_n|/2 = n!/2$.

5.2 Dihedral groups

Given an integer $n \geq 3$, we let $\Delta = \Delta_n \subset \mathbb{R}^2$ be a regular *n*-gon centered at the origin. An **isometry** is a distance-preserving map between metric spaces. If we equip \mathbb{R}^2 with the Euclidean metric, then a **symmetry** of Δ is an isometry (or rigid motion) $\phi : \mathbb{R}^2 \to \mathbb{R}^2$ such that $\phi(\Delta) = \Delta$.

Definition 5.10. The *n*-th dihedral group D_n is the set of symmetries of Δ equipped with composition of maps.

We make the following observations:

- (1) Enumerating the vertices of ∆ as 1, 2, ..., n (say, in the counter-clockwise direction), we can view each element of D_n as a permutation of I_n = {1, 2, ..., n}. Also note that two distinct symmetries will give rise to two distinct permutations of I_n. So we may regard D_n as a subgroup of S_n.
- (2) There is a complete classification of isometries of R²: translations, rotations, reflections and glide reflections. But a symmetry of Δ fixes the origin 0 ∈ R² and both translations and glide reflections have no fixed points, so that D_n consists of *only* rotations and reflections.
- (3) Let $a \in D_n$ be the rotation by the angle $2\pi/n$ in the counter-clockwise direction. Then the set of rotations in D_n is given by $\langle a \rangle = \{ id, a, a^2, \dots, a^{n-1} \}$. On the other hand, there are *n* reflections in D_n . So we conclude that

$$|D_n| = 2n.$$

Furthermore, the composition of two reflections is a rotation (which can be seen by flipping a 2-dollar coin). Hence if we let $b \in D_n$ be any reflection, then the set of reflections in D_n is given by $\{b, ab, a^2b, \ldots, a^{n-1}b\}$. In particular,

$$D_n = \langle a, b \rangle.$$

(4) There are three relations among *a* and *b*:

$$a^n = 1, \ b^2 = 1, \ ab = ba^{-1}.$$

(Again you can confirm this by playing with a 2-dollar coin.) In fact, they are all the relations, so that we have a **presentation**

$$D_n = \langle a, b \mid a^n = b^2 = abab = 1 \rangle.$$

Remark 5.11. Some authors use D_{2n} to denote the *n*-th dihedral group. An excellent reference for dihedral groups and other interesting groups of symmetries is Michael Artin's textbook Algebra (Chapter 5).

Remark 5.12. The dihedral groups form a class of finite subgroups of $SO_3(\mathbb{R})$. The others are given by: finite cyclic groups and the groups of symmetries of the Platonic solids (there are 5 of such solids, corresponding to 3 different groups).

6 Cosets and the theorem of Lagrange

Given a subgroup H < G, we can define two equivalence relations:

$$a \sim_L b \Leftrightarrow a^{-1}b \in H,$$

 $a \sim_R b \Leftrightarrow ab^{-1} \in H.$

These induce two partitions of G, whose equivalence classes are called cosets of H:

Definition 6.1. Let H < G, and $a \in G$. The sets $aH := \{ah \mid h \in H\}$ and $Ha := \{ha \mid h \in H\}$ are called the **left** and **right coset** of H containing a respectively.

Here are some examples:

(1) Let n be a positive integer. Consider the subgroup $n\mathbb{Z} < \mathbb{Z}$. Then the cosets are given by

$$\{k + n\mathbb{Z} \mid k \in \mathbb{Z}\} = \{k + n\mathbb{Z} \mid k \in \{0, 1, \dots, n - 1\}\},\$$

which is in a 1-1 correspondence with elements of \mathbb{Z}_n .

Remark 6.2. When G is abelian, any left coset is equal (as a subset) to the corresponding right coset, and we usually use a + H to denote a coset.

(2) For $\mathbb{Z} < \mathbb{R}$, the cosets are given by

$$\{t + \mathbb{Z} \mid t \in \mathbb{R}\} = \{t + \mathbb{Z} \mid t \in [0, 1)\},\$$

which is in a 1-1 correspondence with the circle group U(1) (by mapping $t + \mathbb{Z}$ to $\exp 1\pi \mathbf{i} t$).

(3) Given a vector subspace $W \subset V$, the cosets of the additive subgroup (W, +) < (V, +) are given by the *affine translates* of the subspace W:

$$\{v + W \mid v \in V\}.$$

If we choose another subspace $Q \subset V$ which is complementary to W, i.e. such that $Q \cap W = \{0\}$ and $\dim(Q) = \dim(V) - \dim(W)$, then each coset is represented by a unique element in Q:

$$\{v + W \mid v \in V\} = \{v + W \mid v \in Q\}.$$

(4) Consider $S_3 = \{id, \rho, \rho^2, \mu, \rho\mu, \rho^2\mu\}$, where $\rho = (1, 2, 3)$ and $\mu = (1, 2)$. Let H be the cyclic subgroup generated by μ . Then the left cosets are

$$H = \{ id, \mu \}, \ \rho H = \{ \rho, \rho \mu \}, \ \rho^2 H = \{ \rho^2, \rho^2 \mu \},$$

while the right cosets are

$$H = \{ \text{id}, \mu \}, \ H\rho = \{ \rho, \rho^2 \mu \}, \ H\rho^2 = \{ \rho^2, \rho \mu \}.$$

Note that $\rho H \neq H\rho$ and $\rho^2 H \neq H\rho^2$.

Since any two cosets are of the same cardinality as H, we have the important:

Theorem 6.3. (Theorem of Lagrange) Suppose that G is a finite group. Then |H| divides |G| for any subgroup H < G.

Corollary 6.4. Suppose that G is a finite group. Then $a^{|G|} = e$ for any $a \in G$.

Corollary 6.5. Every group of prime order is cyclic.

Definition 6.6. Let H < G. The number of distinct left (or right) cosets of H in G, denoted by [G : H], is called the **index** of H in G.

Remark 6.7. The index [G : H] may be infinite. But if G is finite, then (the proof of) the Theorem of Lagrange implies that

$$|G| = [G:H]|H|.$$