
Math 3030 Algebra I
Review of basic group theory

1 Groups
Definition 1.1. A group (G, ∗) is a nonempty set G together with a binary operation

G×G→ G,

(a, b) 7→ a ∗ b,

called the group operation or “multiplication”, such that

(1) ∗ is associative, i.e.
(a ∗ b) ∗ c = a ∗ (b ∗ c)

for any a, b, c ∈ G.

(2) There exists an element e ∈ G, called an identity, such that

a ∗ e = e ∗ a = a

for any a ∈ G.

(3) Each element a ∈ G has an inverse a−1 ∈ G, i.e.

a ∗ a−1 = a−1 ∗ a = e.

Remark 1.2. We often write a · b, or simply ab, to denote a ∗ b.

It is straightforward to show that both the identity and inverse of any given element
are unique, and also that the cancellation laws hold, i.e. for any a, b, c ∈ G, ab = ac
implies that b = c and likewise ba = ca implies that b = c, which can be used to
show that (ab)−1 = b−1a−1 for any a, b ∈ G (or more generally, (a1a2 · · · ak)−1 =
a−1k a−1k−1 · · · a

−1
1 for any a1, a2, . . . , ak ∈ G).

Definition 1.3. The order of G, denoted as |G|, is the number of elements in G. We
call G finite (resp. infinite) if |G| <∞ (resp. |G| =∞).

Definition 1.4. If the group operation is commutative, i.e. ab = ba for any a, b ∈ G,
we say that G is abelian; otherwise, G is said to be nonabelian.

Remark 1.5. When G is abelian, we usually use + to denote the group operation, 0 to
denote the identity, and −a to denote the inverse of an element a ∈ G.

Here are some examples of groups:

(1) Given any field F equipped with the addition + and multiplication ·, both (F,+)
and (F× := F \ {0}, ·) are abelian groups. Examples include Q,R,C with the
usual addition and multiplication.
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(2) Given a commutative ring R with unity, the set of units R× is an abelian group
under ring multiplication.

(3) The set of integers Z is an abelian group under addition, but the set of nonzero
integers Z \ {0} is not a group under multiplication.

(4) For any nonzero integer n, the set (of equivalence classes) Zn is a finite abelian
group under addition mod n.

(5) Any vector space V is an abelian group under the addition. (This is part of the
definition of a vector space.)

(6) The set of all m × n matrices is an abelian group under matrix addition. More
generally, given any group G and a nonempty set X , the set of all maps from X
to G form a group using the group operation in G, which is abelian if G is so.

(7) The set of all nonsingular n×n matrices with coefficients in a field F is a group
under multiplication, denoted by GLn(F ) and called the general linear group
over F . For n ≥ 2, this group is nonabelian.

(8) Let X be a nonempty set, and let SX be the set of all bijective maps (permu-
tations) σ : X → X . Then SX is a group under composition of maps, called
the symmetric group on X . For any positive integer n, the group SIn , where
In := {1, . . . , n}, is denoted as Sn and called the n-th symmetric group. For
n ≥ 3, Sn is a finite nonabelian group.

(9) If G1, G2 are groups, then the Cartesian product G1 × G2 is naturally a group
whose multiplication is defined componentwise; this is called the direct product
of G1 and G2. Similarly, one can define the direct product of any number of
groups.

2 Subgroups
Definition 2.1. Let (G, ∗) be a group. Let H ⊂ G be a subset. If H is closed under ∗,
i.e. a ∗ b ∈ H for any a, b ∈ H and H is a group under the induced group operation ∗,
then we call H a subgroup of G, denoted by H < G.

To check that a (nonempty) subset is a subgroup, we have the following very useful
criterion:

Proposition 2.2. A nonempty subset H of a group G is a subgroup if and only if
ab−1 ∈ H for any a, b ∈ H .

Proposition 2.3. A finite subset H of a group G is a subgroup if and only if H is
nonempty and closed under multiplication.

Here are some examples of subgroups:

(1) We have Z < Q < R < C under addition, and Q× < R× < C× under
multiplication.
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(2) For any group G, we have {e} < G (called the trivial subgroup) and G < G.
A subgroup H � G is called proper and a subgroup {e} � H < G is called
nontrivial.

(3) Vector subspaces are additive subgroups.

(4) The subset
SLn(F ) := {M ∈ GLn(F ) | detM = 1}

is a subgroup of GLn(F ), called the special linear group. We also have the
subgroups

On(F ) = {M ∈ GLn(F ) |MTM = In = MMT },
SOn(F ) = {M ∈ On(F ) | detM = 1}

ofGLn(F ), called the orthogonal group and special orthogonal group respec-
tively, where MT denotes the transpose of M and In denotes the n× n identity
matrix. For F = C, we have the subgroups

U(n) = {M ∈ GLn |M∗M = In = MM∗},
SU(n) = {M ∈ Un | detM = 1}

of GLn(C), called the unitary group and special unitary group respectively,
where M∗ denotes the conjugate transpose of M . When n = 1, this gives the
circle group

U(1) = {z ∈ C | |z| = 1}
as a multiplicative subgroup of C×.

Remark 2.4. The above are examples of matrix groups, which are in turn ex-
amples of Lie groups. When F is a finite field, they for an important class of
finite simple groups.

3 Homomorphisms and isomorphisms
Definition 3.1. A map φ : G → G′ from a group G to another group G′ is called a
homomorphism if

φ(ab) = φ(a)φ(b)

for any a, b ∈ G. If φ is furthermore bijective, then it is called an isomorphism. We
say that G is isomorphic to G′, denoted by G ∼= G′, if there exists an isomorphism φ
from G to G′. An isomorphism from G onto itself is called an automorphism; the set
of all automorphisms of a group G is a group itself, denoted by Aut(G).

Remark 3.2. If φ is an isomorphism, then φ−1 is automatically an isomorphism.

Isomorphic groups share the same algebraic properties (they only differ by rela-
beling of their elements). One of the most important questions in group theory is to
classify all groups up to isomorphism.

Examples of homomorphisms:
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(1) A linear map (resp. isomorphism) between two vector spaces V and W is a
homomorphism (resp. isomorphism) between the abelian groups (V,+) and
(W,+).

(2) The determinant det : GLn(F )→ F× is a homomorphism.

(3) The exponential function exp : (R,+) → (R>0, ·) is an isomorphism, whose
inverse is the logarithm log.

(4) For any nonzero integer n, nZ < Z and the map φ : nZ → Z defined by
φ(nk) = k is an isomorphism. So Z and its proper subgroup nZ (when |n| ≥ 2)
are abstractly isomorphic.

(5) For any positive integer n, the map φ : Z → Zn defined by mapping k to its
reminder when divided by n is a surjective homomorphism.

(6) The map

SO2(R)→ U(1),

(
cos θ − sin θ
sin θ cos θ

)
7→ eiθ

is an isomorphism.

(7) The finite groups Z4 and Z2 ×Z2 are not isomorphic though they have the same
order.

4 Cyclic groups; generating sets

4.1 Cyclic (sub)groups
Definition 4.1. Let G be a group and a ∈ G be any element. Then the subset

〈a〉 := {an | n ∈ Z}

is a subgroup of G, called the cyclic subgroup generated by a. The order of a, denoted
by |a|, is defined as the order of 〈a〉.

Proposition 4.2. If |a| <∞, then |a| is the smallest positive integer k such that ak = e.

Definition 4.3. A group G is called cyclic if there exists a ∈ G such that G = 〈a〉. In
this case, we say a generates G, or a is a generator of G.

Proposition 4.4. Every cyclic group is abelian.

Remark 4.5. The converse is false.

Theorem 4.6. (Classification of cyclic groups) Any infinite cyclic group is isomorphic
to (Z,+). Any cyclic group of finite order n is isomorphic to (Zn,+).

For example, the set of n-th roots of unity Un := {z ∈ C | zn = 1} is a cyclic
subgroup of U(1). By the above theorem, Un is isomorphic to Zn. (This is a better way
to visualize the adjective “cyclic”.) In fact, Un is generated by exp 2πi

n . (How about
the cyclic subgroup generated by exp 2πit where t ∈ R?)
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Proposition 4.7. A subgroup of a cyclic group is also cyclic.

Corollary 4.8. Any subgroup of Z is of the form nZ for n ∈ Z.

Theorem 4.9. (Classification of subgroups of a finite cyclic group) Let G = 〈a〉 be a
cyclic group of finite order n. Let as ∈ G. Then |as| = n/d where d = gcd(s, n).
Moreover, 〈as〉 = 〈at〉 if and only if gcd(s, n) = gcd(t, n).

Corollary 4.10. All generators of a cyclic group G = 〈a〉 are of the form ar where r
is relatively prime to n.

For example, Z18 is generated by 1, 5, 7, 11, 13 or 17.

4.2 Generating sets
Proposition 4.11. The intersection of any collection of subgroups is also a subgroup.

Definition 4.12. Let G be a group, and A ⊂ G any subset. The smallest subgroup 〈A〉
of G containing A is called the subgroup generated by A. By the above proposition,
we must have

〈A〉 =
⋂

{H<G|A⊂H}

H.

If G = 〈A〉, then we say that the subset A generates G. If G is generated by a finite set
A, then we say that G is finitely generated.

Remark 4.13. In practice, the subgroup generated by a subset A is given by the set of
all finite products of powers of elements in A, i.e.

〈A〉 = {ak11 · · · aknn | ai ∈ A, ki ∈ Z}.

For example, there are 2 distinct groups of order 4: the cyclic group Z4 and the
Klein 4-group V , which is not cyclic, but is finitely generated and abelian; in fact,
V ∼= Z2 × Z2 is generated by (1, 0) and (0, 1).

Remark 4.14. All groups of order less than or equal to 3 are cyclic.

As another example, the group SL2(Z) is generated by
(

1 1
0 1

)
and

(
0 1
−1 0

)
.

Remark 4.15. Not all abelian groups are finitely generated, e.g. Q, R.

5 Symmetric groups and dihedral groups

5.1 Symmetric groups
Recall that, given an integer n ≥ 2, the n-th symmetric group Sn is the set of bijective
maps from the set In = {1, . . . , n} onto itself equipped with the composition of maps.
Elements of Sn are called permutations (of In).

For example, a permutation in S10 is of the form(
1 2 3 4 5 6 7 8 9 10
3 10 6 7 8 9 1 4 2 5

)
.
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Definition 5.1. Let i1, i2, . . . , ir (r ≤ n) be distinct elements of In. Denote by
(i1, i2, . . . , ir) the permutation

i1 7→ i2, i2 7→ i3, . . . , ir−1 7→ ir, ir 7→ i1

and j 7→ j for any j ∈ In \ {i1, i2, . . . , ir}. We call (i1, i2, . . . , ir) an r-cycle, and r
is the length of the cycle. A 2-cycle is also called a transposition.

For example, in S5, we have

(1, 3, 4, 5) =

(
1 2 3 4 5
3 2 5 1 4

)
= (5, 4, 1, 3).

Proposition 5.2. Every permutation σ ∈ Sn is a product of disjoint cycles (unique up
to ordering of the terms in the product). In particular, Sn is generated by cycles.

For example, in S8, we have(
1 2 3 4 5 6 7 8
3 8 6 7 4 1 5 2

)
= (1, 3, 6)(2, 8)(4, 7, 5).

Remark 5.3. Composition of disjoint cycles is commutative.

Proposition 5.4. For an r-cycle µ, we have |µ| = r. Hence, if we write a permutation
σ as a product of disjoint cycles σ = µ1µ2 · · ·µk, then

|σ| = lcm(r1, r2, . . . , rk),

where ri = |µi| = length of µi.

Since (i1, i2, . . . , ir) = (i1, ir)(i1, ir−1) · · · (i1, i3)(i1, i2), we have

Proposition 5.5. Every permutation is a product of transpositions. In particular, Sn is
generated by transpositions.

Corollary 5.6. Sn is generated by (1, 2) and (1, 2, . . . , n).

Note that the decomposition in Proposition 5.5 is not unique, e.g.

(1, 2, 3) = (1, 3)(1, 2) = (1, 3)(2, 3)(1, 2)(1, 3).

However, the parity is well-defined:

Proposition 5.7. No permutation can be expressed both as a product of an even num-
ber of transpositions and also as a product of an odd number of transpositions.

Hence the following definition makes sense.

Definition 5.8. A permutation σ ∈ Sn is called even (resp. odd) if it can be expressed
as a product of an even (resp. odd) number of transpositions.

Proposition 5.9. Let An be the subset of all even permutations in Sn. Then An is a
subgroup, called the n-th alternating group. Moreover, the order of An is |Sn|/2 =
n!/2.
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5.2 Dihedral groups
Given an integer n ≥ 3, we let ∆ = ∆n ⊂ R2 be a regular n-gon centered at the
origin. An isometry is a distance-preserving map between metric spaces. If we equip
R2 with the Euclidean metric, then a symmetry of ∆ is an isometry (or rigid motion)
φ : R2 → R2 such that φ(∆) = ∆.

Definition 5.10. The n-th dihedral group Dn is the set of symmetries of ∆ equipped
with composition of maps.

We make the following observations:

(1) Enumerating the vertices of ∆ as 1, 2, . . . , n (say, in the counter-clockwise direc-
tion), we can view each element of Dn as a permutation of In = {1, 2, . . . , n}.
Also note that two distinct symmetries will give rise to two distinct permutations
of In. So we may regard Dn as a subgroup of Sn.

(2) There is a complete classification of isometries of R2: translations, rotations,
reflections and glide reflections. But a symmetry of ∆ fixes the origin 0 ∈
R2 and both translations and glide reflections have no fixed points, so that Dn

consists of only rotations and reflections.

(3) Let a ∈ Dn be the rotation by the angle 2π/n in the counter-clockwise direction.
Then the set of rotations in Dn is given by 〈a〉 = {id, a, a2, . . . , an−1}. On the
other hand, there are n reflections in Dn. So we conclude that

|Dn| = 2n.

Furthermore, the composition of two reflections is a rotation (which can be seen
by flipping a 2-dollar coin). Hence if we let b ∈ Dn be any reflection, then the
set of reflections in Dn is given by {b, ab, a2b, . . . , an−1b}. In particular,

Dn = 〈a, b〉.

(4) There are three relations among a and b:

an = 1, b2 = 1, ab = ba−1.

(Again you can confirm this by playing with a 2-dollar coin.) In fact, they are all
the relations, so that we have a presentation

Dn = 〈a, b | an = b2 = abab = 1〉.

Remark 5.11. Some authors use D2n to denote the n-th dihedral group. An excellent
reference for dihedral groups and other interesting groups of symmetries is Michael
Artin’s textbook Algebra (Chapter 5).

Remark 5.12. The dihedral groups form a class of finite subgroups of SO3(R). The
others are given by: finite cyclic groups and the groups of symmetries of the Platonic
solids (there are 5 of such solids, corresponding to 3 different groups).
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6 Cosets and the theorem of Lagrange
Given a subgroup H < G, we can define two equivalence relations:

a ∼L b⇔ a−1b ∈ H,
a ∼R b⇔ ab−1 ∈ H.

These induce two partitions of G, whose equivalence classes are called cosets of
H:

Definition 6.1. Let H < G, and a ∈ G. The sets aH := {ah | h ∈ H} and
Ha := {ha | h ∈ H} are called the left and right coset ofH containing a respectively.

Here are some examples:

(1) Let n be a positive integer. Consider the subgroup nZ < Z. Then the cosets are
given by

{k + nZ | k ∈ Z} = {k + nZ | k ∈ {0, 1, . . . , n− 1}},

which is in a 1-1 correspondence with elements of Zn.

Remark 6.2. When G is abelian, any left coset is equal (as a subset) to the
corresponding right coset, and we usually use a+H to denote a coset.

(2) For Z < R, the cosets are given by

{t+ Z | t ∈ R} = {t+ Z | t ∈ [0, 1)},

which is in a 1-1 correspondence with the circle group U(1) (by mapping t+ Z
to exp 1πit).

(3) Given a vector subspace W ⊂ V , the cosets of the additive subgroup (W,+) <
(V,+) are given by the affine translates of the subspace W :

{v +W | v ∈ V }.

If we choose another subspace Q ⊂ V which is complementary to W , i.e. such
that Q ∩ W = {0} and dim(Q) = dim(V ) − dim(W ), then each coset is
represented by a unique element in Q:

{v +W | v ∈ V } = {v +W | v ∈ Q}.

(4) Consider S3 = {id, ρ, ρ2, µ, ρµ, ρ2µ}, where ρ = (1, 2, 3) and µ = (1, 2). Let
H be the cyclic subgroup generated by µ. Then the left cosets are

H = {id, µ}, ρH = {ρ, ρµ}, ρ2H = {ρ2, ρ2µ},

while the right cosets are

H = {id, µ}, Hρ = {ρ, ρ2µ}, Hρ2 = {ρ2, ρµ}.

Note that ρH 6= Hρ and ρ2H 6= Hρ2.
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Since any two cosets are of the same cardinality as H , we have the important:

Theorem 6.3. (Theorem of Lagrange) Suppose that G is a finite group. Then |H|
divides |G| for any subgroup H < G.

Corollary 6.4. Suppose that G is a finite group. Then a|G| = e for any a ∈ G.

Corollary 6.5. Every group of prime order is cyclic.

Definition 6.6. Let H < G. The number of distinct left (or right) cosets of H in G,
denoted by [G : H], is called the index of H in G.

Remark 6.7. The index [G : H] may be infinite. But if G is finite, then (the proof of)
the Theorem of Lagrange implies that

|G| = [G : H]|H|.
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