THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2019-20 Homework 3 Due Date: 26th September 2019

Compulsory part

- 1. Show that A_n is a normal subgroup of S_n and compute S_n/A_n ; that is, find a known group to which S_n/A_n is isomorphic.
- 2. A torsion group is a group all of whose elements have finite order. A group is torsion free if the identity is the only element of finite order. Prove that the torsion subgroup T of an abelian G is a normal subgroup of G, and that G/T is torsion free.
- 3. Let H be a normal subgroup of a group G, and let m = (G : H). Show that $a^m \in H$ for every $a \in G$.
- 4. Let G be a group containing at least one subgroup of fixed finite order S. Show that the intersection of all subgroups of G of order s is a normal subgroup of G. [Hint: Use the fact that if H has order s, then so does $x^{-1}Hx$ for all $x \in G$.]
- 5. Show that the set of all $g \in G$ such that $i_g : G \to G$ is the identity inner automorphism i_e is a normal subgroup of a group G.
- 6. Using the properties det(AB) = det(A) det(B) and $det(I_n) = 1$ for $n \times n$ matrices to show the following:
 - (a) The $n \times n$ matrices with determinant 1 form a normal subgroup of $GL(n, \mathbb{R})$.
 - (b) The $n \times n$ matrices with determinant ± 1 form a normal subgroup of $GL(n, \mathbb{R})$.

Optional part

- 1. Given any set S of a group G, show that it makes sense to speak of the smallest normal subgroup that contains S.
- 2. Let G be a group, and let P(G) be the set of all subsets of G. For any $A, B \in P(G)$, let us define the product subset $AB = \{ab | a \in A, b \in B\}$.
 - (a) Show that this multiplication is associative and has an identity element, but that P(G) is not a group under this operation.
 - (b) Show that if N is a normal subgroup of G, then the set of cosets of N is closed under the above operation on P(G), and that this operation agrees with the multiplication given by the formula in Corollary 14.5 of textbook.
 - (c) Show (without using Corollary 14.5 of textbook) that the cosets of N in G form a group under the above operation. Is its identity element the same as the identity element of P(G).