MATH3030 EXAM I-10/17/19 OUTLINED SOLUTION

- Print your name and student ID on the front page
- Give adequate explanation and justification for all your calculations and observations, and write your proofs in a clear and rigorous way
- Answer all questions.
- (1) Let \mathbb{Z}_{18}^{\times} be the group of all positive integers less than 18 and relative prime to 18, with the group operation given by the multiplication modulo 18.
 - (1) (10 points) List all the elements of \mathbb{Z}_{18}^{\times} . $\mathbb{Z}_{18}^{\times} = \{1, 5, 7, 11, 13, 17\}$
 - (2) (10 points) Show that \mathbb{Z}_{18}^{\times} is cyclic. The order of 5 is 6 which is the order of $|\mathbb{Z}_{18}^{\times}|$, as $5^2 \equiv 7 \pmod{18}$ and $5^3 \equiv 17 \pmod{18}$.
- (2) Let $G = S_3$, the symmetry group of $\{1, 2, 3\}$ and $G' = GL(2, \mathbb{Z}_2)$, the group of 2×2 -matrices with nonzero determinant and with entries from \mathbb{Z}_2 .
 - (1) (10 points) List the elements of S_3 . What are the orders of these elements? $S_3 = \{Id, (1,2), (1,3), (2,3), (1,2,3), (1,3,2)\}$. Id is of order 1. (1,2), (1,3) and (2,3) are of order 2. (1,2,3) and (1,3,2) are of order 3.
 - (2) (10 points) List the elements of $GL(2, \mathbb{Z}_2)$. What are the orders of these elements? $GL(2, \mathbb{Z}_2) = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\}. \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ is of order 1. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ are of order 2. $\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ are of order 3.
 - (3) (10 points) Construct a group isomorphism from G to G' by specifying the image of every element of G. Let $\phi : S_3 \to GL(2, \mathbb{Z}_2)$ be a map defined by $\phi(Id) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \phi(1,2) =$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \phi(1,3) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \phi(2,3) = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \ \phi(1,2,3) = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \text{ and}$$

MATH3030 EXAM I-10/17/19 OUTLINED SOLUTION

$$\phi(1,3,2) = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
. This is a group isomorphism.

- (3) (1) (10 points) State the fundamental theorem of finite abelian groups Book-work
 - (2) (15 points) Let G be a finite abelian group. Suppose that G has exactly 3 subgroups: $\{e\}$, G itself and another subgroup. Show that $G \cong \mathbb{Z}_{p^2}$ for some prime p.

Let *n* be the order of *G*. By the fundamental theorem of finite abelian groups, $G \cong \mathbb{Z}_{q_1} \times \cdots \times \mathbb{Z}_{q_t}$ where q_1, \ldots, q_t are powers of (not necessarily distinct) prime numbers.

We first claim that n is a prime power, that is, $n = p^r$ for some prime p and some positive integer r. Suppose not, there are two distinct primes r and ssuch that r|n and s|n. Then G has at least 4 subgroups: $\{e\}$, G, a subgroup isomorphric to \mathbb{Z}_r and a subgroup isomorphric to \mathbb{Z}_s . This follows plainly.

Next we would like to show that $n = p^2$. If n = p, then $G \cong \mathbb{Z}_p$ has only 2 subgroups. If $n = p^r$ with $r \ge 3$, then $G \cong \mathbb{Z}_{p^r}$ has r+1 subgroups. Therefore, $G \cong \mathbb{Z}_{p^2}$.

(4) (1) (15 points) Prove that every finite group has a composition series.

Note that because every finite group is a finite set, every chain of proper normal subgroups of a finite group has a maximal element and thus every finite group has a proper maximal normal subgroup.

Let G be a finite group. We proceed to the statement by mathematical induction on the order |G| = n.

When n = 1, it is trivial.

Suppose that any finite group having order less than n has a composition series. Let G be a group of order n.

If G is simple, then we are done.

If G is not simple, then it has a proper maximal normal subgroup H. Thus the quotient group G/H is simple. Applying the induction hypothesis on |H|as |H| < |G|, H has a composition series, i.e.

$$\{e\} = N_m \triangleleft N_{m-1} \triangleleft \cdots \triangleleft N_1 = H.$$

Thus the series

$$\{e\} = N_m \triangleleft N_{m-1} \triangleleft \cdots \triangleleft N_1 = H \triangleleft N_0 = G$$

has a simple factor N_i/N_{i+1} , hence it is a composition series for G.

(2) (10 points) Find an example of two nonisomorphic groups with the same composition factors Consider D_p and Z_{2p} for any odd prime p.