THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 3030 Abstract Algebra 2019-20 Homework 8 Due Date: 14 November 2019

Compulsory part

- 1. Prove that D is an integral domain, then D[x] is an integral domain.
- 2. Let D be an integral domain and x an indeterminate.
 - (a) Describe the units in D[x].
 - (b) Find the units in $\mathbb{Z}[x]$.
 - (c) Find the units in $\mathbb{Z}_7[x]$.
- 3. Let F be a field of characteristic 0 and let D be the formal polynomial differentiation map, so that

$$D(a_0 + a_1 + a_2x^2 + \dots + a_nx^n) = a_1 + 2 \cdot a_2x + \dots + n \cdot a_nx^{n-1}.$$

- (a) Show that $D: F[x] \to F[x]$ is a group homomorphism of $\langle F[x], + \rangle$ into itself. Is D a ring homomorphism?
- (b) Find the kernel of D.
- (c) Find the image of F[x] under D.
- 4. Let R be a ring, and let R^R be the set of all functions mapping R into R. For $\phi, \psi \in R^R$, define the sum $\phi + \psi$ by

$$(\phi + \psi)(r) = \phi(r) + \psi(r)$$

and the product $\phi \cdot \psi$ by

$$(\phi \cdot \psi)(r) = \phi(r)\psi(r)$$

for $r \in R$. Note that \cdot is *not* function composition. It is known that $\langle R^R, +, \cdot \rangle$ is a ring. Let F be a field. An element ϕ of F^F is a **polynomial function on** F, if there exists $f(x) \in F[x]$ such that $\phi(a) = f(a)$ for all $a \in F$.

- (a) Show that the set P_f of all polynomial functions on F forms a subring of F^F .
- (b) Show that the ring P_f is not necessarily isomorphic to F[x]. (Hint: Consider the finite field.)
- 5. Show that for p a prime, the polynomial $x^p + a \in \mathbb{Z}_p[x]$ is not irreducible for any $a \in \mathbb{Z}_p$.
- 6. Let $\sigma_m : \mathbb{Z} \to \mathbb{Z}_m$ be the natural homomorphism given by

 $\sigma_m(a) = ($ the remainder of a when divided by m)

for $a \in \mathbb{Z}$.

(a) Show that $\overline{\sigma_m} : \mathbb{Z}[x] \to \mathbb{Z}_m[x]$ given by

$$\overline{\sigma_m}(a_0 + a_1x + \dots + a_nx^n) = \sigma_m(a_0) + \sigma_m(a_1)x + \dots + \sigma_m(a_n)x^n$$

is a homomorphism of $\mathbb{Z}[x]$ onto $\mathbb{Z}_m[x]$.

- (b) Show that if $f(x) \in \mathbb{Z}[x]$ and $\overline{\sigma_m}(f(x))$ both have degree n and $\overline{\sigma_m}(f(x))$ does not have factor in $\mathbb{Z}_m[x]$ into two polynomials of degree less than n, then f(x) is irreducible in $\mathbb{Q}[x]$.
- (c) Use part (b) to show that $x^3 + 17x + 36$ is irreducible in $\mathbb{Q}[x]$. (Hint: Try a prime value of m that simplifies the coefficients.)