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Compulsory part

1. Note that |φ[G]| < |G| from the definition φ[G] = {φ(g) : g ∈ G}. Hence |φ[G]| is finite.
We have |φ[G]| = |G/Ker(φ)|, so |φ[G]| is a divisor of |G|.

2. We first note that Ker(φ) is a subgroup of G. By the Theorem of Lagrange, either
Ker(φ) = {e} or Ker(φ) = G as |G| is a prime number. If Ker(φ) = {e}, then φ
is one to one. If Ker(φ) = G, then the map φ is the trivial homomorphism, mapping
everything into the identity element.

3. Let x′, y′ ∈ φ[G] and let φ(x) = x′ and φ(y) = y′ where x, y ∈ G. Then φ[G] is abelian
which is equivalent to

x′y′ = y′x′ = e′ ⇔ x′−1y′−1x′y′ = e′ ⇔ φ
(
x−1y−1xy

)
= e′ ⇔ x−1y−1xy ∈ Ker(φ).

4. The necessary and sufficient condition is hk = kh.

If φ is a homomorphism, we then have

hk = φ (1, 0) + φ (0, 1) = φ (1, 1) = φ (0, 1) + φ (1, 0) = kh.

Conversely, suppose that hk = kh. For any (i, j) and (m,n) in Z× Z, one has

φ ((i, j) + (m,n)) = φ (i+m, j + n) = hi+mkj+n = φ(i, j)φ(m,n).

5. {eqπi : q ∈ Q}

6. S3

7. Suppose that G/Z(G) is cyclic and is generated by the coset aZ(G). Let x, y ∈ G. Then
x ∈ amZ(G) and y ∈ anZ(G) for some integers m,n. We can thus write x = amz1 and
y = anz2 where z1, z2 ∈ Z(G). Because z1 and z2 commute with every element of G, we
have

xy = amz1a
nz2 = am+nz1z2 = anz2a

mz1 = yx,

showing that G is abelian. Therefore by contrapositive, if G is not abelian, then G/Z(G)
is not cyclic.

8. Let G be a nonabelian group of order pq. Suppose its centre subgroup Z(G) is not trivial.
Note that Z(G) 6= G as G is nonabelian. By the theorem of Lagrange, |Z(G)| divides
pq, so |Z(G)| can only be either p or q and hence is cyclic. But both cases contradicts the
preceding problem. We only have Z(G) = {e}.

Optional part
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1. Let Sa be the set {x ∈ G : φ(x) = φ(a)}. Let s ∈ Sa. We then have φ(sa−1) =
φ(a)φ(a−1) = e′, implying that sa−1 ∈ H or equivalently s ∈ Ha.

Let h′ ∈ Ha. Then h′ = ha for some h ∈ H . This h′ is in Sa as

φ(h′) = φ(ha) = φ(h)φ(a) = e′φ(a) = φ(a).

2. The preceding exercise shows that the map φ is a homomorphism for all choices of h and
k in G if and only if hk = kh for all h and k in G, that is, if and only if G is an abelian
group.

3. (a) All 3-cycle are even.

(b) Every element in An can be written as the product of an even number of 2-cycles.
We then pair up the adjacent 2-cycles and thus it suffices to show that the product
of any pair of 2-cycles can be written as the product of some 3-cycles. For distinct
i, j, k, `, we have the following three possibilities:(

i j
) (
i j

)
= Id,(

i j
) (
j k

)
=

(
i j k

)
,

and (
i j

) (
k `

)
=

(
i j k

) (
j k `

)
.

(c) By the hint, we find that

(r, s, i)2 = (r, i, s), (r, s, j)(r, s, i)2 = (r, i, j), (r, s, j)2(r, s, i) = (s, i, j),

and
(r, s, i)2(r, s, k)(r, s, j)2(r, s, i) = (i, j, k).

Note that every 3-cycle either contains neither r nor s and is of the form (i, j, k), or
just one of r or s and is of the form (r, i, j) or (s, i, j), or both r and s and is of the
form (r, s, i) or (r, i, s) = (s, r, i). Because all of these forms can be obtained from
our special 3-cycles (see the above), we see that the special 3-cycles generate An.

(d) Following the hint, we find that

((r, s)(i, j)) (r, s, i)2 ((r, s)(i, j))−1 = (r, s, j).

If N is a normal subgroup of An and contains a 3-cycle, which we can consider to
be (r, s, i) in which r and s could be any two fixed numbers from 1 to n as in Part(c),
we see thatN must contain all the special 3-cycles and hence be all ofAn by Part(c).

(e) Before drilling into the computations in the hints of the five cases, we observe that
one of the cases must hold. If Case I is not true and Case II is not true, then when
elements of N are written as a product of disjoint cycles, no cycle of length greater
than 3 occurs, and no element of N is a single 3-cycle. The remaining cases cover
the possibilities that at least one of the products of disjoint cycles involves two cycles
of length 3, involves one cycle of length 3, or involves no cycle of length 3. Thus all
possibilities are covered, and we now turn to the computations in the hints.

Case I If N contains a 3-cycle, then we are done by Part (d).
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Case II N contains a product of disjoint cycles, at least one of which has length greater
than 3. Suppose N contains the disjoint product σ = µ(a1, a2, · · · , ar). We
then have that

σ−1(a1, a2, a3)σ(a1, a2, a3)
−1 = (a1, a3, ar)

which is inN as σ−1 ∈ N and (a1, a2, a3)σ(a1, a2, a3)
−1 ∈ N by the normality.

Thus in this case, N contains a 3-cycle and is equal to An by Part(d) again.
Case III With a similar reason in Case II, we see that

σ−1(a1, a2, a4)σ(a1, a2, a4)
−1 = (a1, a4, a2, a6, a3) ∈ N.

Thus N contains a cycle of length greater than 3, and N = An by using the
method in Case II.

Case IV Since σ ∈ N , σ2 ∈ N . On the other hand, by noting that µ is a product of
disjoint 2-cycles, we have σ2 = (a1, a3, a2), so N contains a 3-cycle. Hence
N = An by Part (d).

Case V With a similar reason in Case II, we see that

σ−1(a1, a2, a3)σ(a1, a2, a3)
−1 = (a1, a3)(a2, a4) ∈ N.

Letting α = (a1, a3)(a2, a4) and β = (a1, a3, i) where i is different from
a1, a2, a3, a4, we have α ∈ An and β ∈ N . N is a normal subgroup of An im-
plies that β−1αβα ∈ N . A direct computation yields that β−1αβα = (a1, a3, i).
Thus N = An in this case also, by Part(d).


